Advertisement

Overdiagnosis in the Era of Neuropsychiatric Imaging

Published:March 15, 2015DOI:https://doi.org/10.1016/j.acra.2015.02.004
      New guidelines proposed by the National Institute of Mental Health are intended to transform the management of patients with psychiatric disorders. It is anticipated that neuroimaging and other biomarkers will play a more prominent role in diagnosis and prognosis, especially in the prodromal phase of illness. Earlier treatment of psychiatric disorders has the potential to improve outcomes significantly. However, diagnosis in the absence of symptoms can lead to overdiagnosis. Overdiagnosis is a problem in many fields of medicine but could pose additional problems in psychiatry because of the stigmatization that often accompanies a diagnosis of mental illness. This review discusses the magnetic resonance imaging methods that hold the most promise for evaluating neuropsychiatric disorders, the likelihood that they could lead to overdiagnosis, and opportunities to minimize the impact of overdiagnosis in psychiatric disorders.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Berk M.
        The DSM-5: hyperbole, hope or hypothesis?.
        BMC Med. 2013; 11: 128
        • Möller H.-J.
        The consequences of DSM-5 for psychiatric diagnosis and psychopharmacotherapy.
        Int J Psychiatry Clin Pract. 2014; 18: 78-85
        • Insel T.R.
        The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry.
        Am J Psychiatry. 2014; 171: 395-397
        • Insel T.R.
        Rethinking schizophrenia.
        Nature. 2010; 468: 187-193
        • Howlin P.
        • Magiati I.
        • Charman T.
        Systematic review of early intensive behavioral interventions for children with autism.
        Am J Intellect Dev Disabil. 2009; 114: 23-41
        • Mokhtari M.
        • Rajarethinam R.
        Early intervention and the treatment of prodrome in schizophrenia: a review of recent developments.
        J Psychiatr Pract. 2013; 19: 375-385
        • Addington J.
        • Heinssen R.
        Prediction and prevention of psychosis in youth at clinical high risk.
        Annu Rev Clin Psychol. 2012; 8: 269-289
        • Miklowitz D.J.
        • O'Brien M.P.
        • Schlosser D.A.
        • et al.
        Family-focused treatment for adolescents and young adults at high risk for psychosis: results of a randomized trial.
        J Am Acad Child Adolesc Psychiatry. 2014; 53: 848-858
        • McFarlane W.R.
        • Levin B.
        • Travis L.
        • et al.
        Clinical and functional outcomes after 2 years in the early detection and intervention for the prevention of psychosis multisite effectiveness trial.
        Schizophr Bull. 2015; 41: 30-43
        • Lefaucheur J.-P.
        • André-Obadia N.
        • Antal A.
        • et al.
        Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS).
        Clin Neurophysiol. 2014; 125: 2150-2206
        • Williams N.R.
        • Okun M.S.
        Deep brain stimulation (DBS) at the interface of neurology and psychiatry.
        J Clin Invest. 2013; 123: 4546-4556
        • Bais M.
        • Figee M.
        • Denys D.
        Neuromodulation in obsessive-compulsive disorder.
        Psychiatr Clin North Am. 2014; 37: 393-413
        • Berlim M.T.
        • Neufeld N.H.
        • Van den Eynde F.
        Repetitive transcranial magnetic stimulation (rTMS) for obsessive-compulsive disorder (OCD): an exploratory meta-analysis of randomized and sham-controlled trials.
        J Psychiatr Res. 2013; 47: 999-1006
        • Ogawa S.
        Finding the BOLD effect in brain images.
        NeuroImage. 2012; 62: 608-609
        • Le Bihan D.
        • Johansen-Berg H.
        Diffusion MRI at 25: exploring brain tissue structure and function.
        NeuroImage. 2012; 61: 324-341
        • Perlini C.
        • Bellani M.
        • Brambilla P.
        Structural imaging techniques in schizophrenia.
        Acta Psychiatr Scand. 2012; 126: 235-242
        • Johnstone E.C.
        • Crow T.J.
        • Frith C.D.
        • et al.
        Cerebral ventricular size and cognitive impairment in chronic schizophrenia.
        Lancet. 1976; 2: 924-926
        • Levitt J.J.
        • Bobrow L.
        • Lucia D.
        • et al.
        A selective review of volumetric and morphometric imaging in schizophrenia.
        Curr Top Behav Neurosci. 2010; 4: 243-281
        • Honea R.
        • Crow T.J.
        • Passingham D.
        • et al.
        Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies.
        Am J Psychiatry. 2005; 162: 2233-2245
        • Shepherd A.M.
        • Laurens K.R.
        • Matheson S.L.
        • et al.
        Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia.
        Neurosci Biobehav Rev. 2012; 36: 1342-1356
        • Haijma S.V.
        • Van Haren N.
        • Cahn W.
        • et al.
        Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects.
        Schizophr Bull. 2013; 39: 1129-1138
        • Minzenberg M.J.
        • Laird A.R.
        • Thelen S.
        • et al.
        Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia.
        Arch Gen Psychiatry. 2009; 66: 811-822
        • MacDonald A.W.
        • Thermenos H.W.
        • Barch D.M.
        • et al.
        Imaging genetic liability to schizophrenia: systematic review of FMRI studies of patients' nonpsychotic relatives.
        Schizophr Bull. 2009; 35: 1142-1162
        • Fitzsimmons J.
        • Kubicki M.
        • Shenton M.E.
        Review of functional and anatomical brain connectivity findings in schizophrenia.
        Curr Opin Psychiatry. 2013; 26: 172-187
        • Zhang T.
        • Koutsouleris N.
        • Meisenzahl E.
        • et al.
        Heterogeneity of structural brain changes in subtypes of schizophrenia revealed using magnetic resonance imaging pattern analysis.
        Schizophr Bull. 2014; 41: 74-84
        • Schroder J.
        • Buchsbaum M.S.
        • Siegel B.V.
        • et al.
        Cerebral metabolic activity correlates of subsyndromes in chronic schizophrenia.
        Schizophr Res. 1996; 19: 41-53
        • Padmanabhan J.L.
        • Tandon N.
        • Haller C.S.
        • et al.
        Correlations between brain structure and symptom dimensions of psychosis in schizophrenia, schizoaffective, and psychotic bipolar I disorders.
        Schizophr Bull. 2014; 41: 154-162
        • Stigler K.A.
        • McDonald B.C.
        • Anand A.
        • et al.
        Structural and functional magnetic resonance imaging of autism spectrum disorders.
        Brain Res. 2011; 1380: 146-161
        • Wolff J.J.
        • Gu H.
        • Gerig G.
        • et al.
        Differences in white matter fiber tract development present from 6 to 24 months in infants with autism.
        Am J Psychiatry. 2012; 169: 589-600
        • Kleinhans N.M.
        • Richards T.
        • Johnson L.C.
        • et al.
        fMRI evidence of neural abnormalities in the subcortical face processing system in ASD.
        NeuroImage. 2011; 54: 697-704
        • Aoki Y.
        • Cortese S.
        • Tansella M.
        Neural bases of atypical emotional face processing in autism: a meta-analysis of fMRI studies.
        World J Biol Psychiatry. 2014; : 1-10
        • Just M.A.
        • Cherkassky V.L.
        • Keller T.A.
        • et al.
        Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity.
        Brain J Neurol. 2004; 127: 1811-1821
        • Villalobos M.E.
        • Mizuno A.
        • Dahl B.C.
        • et al.
        Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism.
        NeuroImage. 2005; 25: 916-925
        • Welchew D.E.
        • Ashwin C.
        • Berkouk K.
        • et al.
        Functional disconnectivity of the medial temporal lobe in Asperger's syndrome.
        Biol Psychiatry. 2005; 57: 991-998
        • Admon R.
        • Milad M.R.
        • Hendler T.
        A causal model of post-traumatic stress disorder: disentangling predisposed from acquired neural abnormalities.
        Trends Cogn Sci. 2013; 17: 337-347
        • Ruocco A.C.
        • Amirthavasagam S.
        • Zakzanis K.K.
        Amygdala and hippocampal volume reductions as candidate endophenotypes for borderline personality disorder: a meta-analysis of magnetic resonance imaging studies.
        Psychiatry Res. 2012; 201: 245-252
        • Bremner J.D.
        Neuroimaging in posttraumatic stress disorder and other stress-related disorders.
        Neuroimaging Clin N Am. 2007; 17 (ix): 523-538
        • Zhang W.-N.
        • Chang S.-H.
        • Guo L.-Y.
        • et al.
        The neural correlates of reward-related processing in major depressive disorder: a meta-analysis of functional magnetic resonance imaging studies.
        J Affect Disord. 2013; 151: 531-539
        • Whalley H.C.
        • Sussmann J.E.
        • Romaniuk L.
        • et al.
        Prediction of depression in individuals at high familial risk of mood disorders using functional magnetic resonance imaging.
        PloS One. 2013; 8: e57357
        • McIntosh A.M.
        • Owens D.C.
        • Moorhead W.J.
        • et al.
        Longitudinal volume reductions in people at high genetic risk of schizophrenia as they develop psychosis.
        Biol Psychiatry. 2011; 69: 953-958
        • Job D.E.
        • Whalley H.C.
        • Johnstone E.C.
        • et al.
        Grey matter changes over time in high risk subjects developing schizophrenia.
        NeuroImage. 2005; 25: 1023-1030
        • Bolton D.
        Overdiagnosis problems in the DSM-IV and the new DSM-5: can they be resolved by the distress-impairment criterion?.
        Can J Psychiatry. 2013; 58: 612-617
        • Welch H.G.
        • Schwartz L.
        • Woloshin S.
        Overdiagnosed: Making People Sick in the Pursuit of Health.
        1st ed. Beacon Press, Boston, Mass2012
        • Conner K.O.
        • Copeland V.C.
        • Grote N.K.
        • et al.
        Mental health treatment seeking among older adults with depression: the impact of stigma and race.
        Am J Geriatr Psychiatry. 2010; 18: 531-543
        • Poldrack R.A.
        Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding.
        Neuron. 2011; 72: 692-697
        • Piras F.
        • Piras F.
        • Chiapponi C.
        • et al.
        Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies.
        Cortex. 2015; 62: 89-108
        • Salgado-Pineda P.
        • Landin-Romero R.
        • Fakra E.
        • et al.
        Structural abnormalities in schizophrenia: further evidence on the key role of the anterior cingulate cortex.
        Neuropsychobiology. 2014; 69: 52-58
        • Kühn S.
        • Gallinat J.
        Gray matter correlates of posttraumatic stress disorder: a quantitative meta-analysis.
        Biol Psychiatry. 2013; 73: 70-74
        • Lai C.-H.
        Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies.
        Psychiatry Res. 2013; 211: 37-46
        • Loh K.K.
        • Kanai R.
        Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex.
        PloS One. 2014; 9: e106698
        • Freund W.
        • Faust S.
        • Gaser C.
        • et al.
        Regionally accentuated reversible brain grey matter reduction in ultra marathon runners detected by voxel-based morphometry.
        BMC Sports Sci Med Rehabil. 2014; 6: 4
        • Hutzler F.
        Reverse inference is not a fallacy per se: cognitive processes can be inferred from functional imaging data.
        NeuroImage. 2014; 84: 1061-1069
        • Phelps J.
        • Ghaemi S.N.
        The mistaken claim of bipolar “overdiagnosis”: solving the false positives problem for DSM-5/ICD-11.
        Acta Psychiatr Scand. 2012; 126: 395-401
        • Sabuncu M.R.
        • Konukoglu E.
        • for the Alzheimer's Disease Neuroimaging Initiative
        Clinical prediction from structural brain MRI scans: a large-scale empirical study.
        Neuroinformatics. 2015; 13: 31-46
        • Zarogianni E.
        • Moorhead T.W.J.
        • Lawrie S.M.
        Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level.
        NeuroImage Clin. 2013; 3: 279-289
        • Nieuwenhuis M.
        • van Haren N.E.
        • Hulshoff Pol H.E.
        • et al.
        Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples.
        NeuroImage. 2012; 61: 606-612
        • Iwabuchi S.J.
        • Liddle P.F.
        • Palaniyappan L.
        Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational neuroimaging.
        Front Psychiatry. 2013; 4: 95
        • Zanetti M.V.
        • Schaufelberger M.S.
        • Doshi J.
        • et al.
        Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia.
        Prog Neuropsychopharmacol Biol Psychiatry. 2013; 43: 116-125
        • Bansal R.
        • Staib L.H.
        • Laine A.F.
        • et al.
        Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses.
        PloS One. 2012; 7: e50698
        • Sato J.R.
        • de Araujo Filho G.M.
        • de Araujo T.B.
        • et al.
        Can neuroimaging be used as a support to diagnosis of borderline personality disorder? An approach based on computational neuroanatomy and machine learning.
        J Psychiatr Res. 2012; 46: 1126-1132
        • Hart H.
        • Marquand A.F.
        • Smith A.
        • et al.
        Predictive neurofunctional markers of attention-deficit/hyperactivity disorder based on pattern classification of temporal processing.
        J Am Acad Child Adolesc Psychiatry. 2014; 53: 569-578.e1
        • Wang X.
        • Jiao Y.
        • Tang T.
        • et al.
        Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder.
        Eur J Radiol. 2013; 82: 1552-1557
        • Dey S.
        • Rao A.R.
        • Shah M.
        Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects.
        Front Neural Circuits. 2014; 8: 64
        • Nielsen J.A.
        • Zielinski B.A.
        • Fletcher P.T.
        • et al.
        Multisite functional connectivity MRI classification of autism: ABIDE results.
        Front Hum Neurosci. 2013; 7: 599
        • Anderson J.S.
        • Nielsen J.A.
        • Froehlich A.L.
        • et al.
        Functional connectivity magnetic resonance imaging classification of autism.
        Brain J Neurol. 2011; 134: 3742-3754
        • Iidaka T.
        Resting state functional magnetic resonance imaging and neural network classified autism and control.
        Cortex. 2014; 63C: 55-67
        • Uddin L.Q.
        • Supekar K.
        • Lynch C.J.
        • et al.
        Salience network-based classification and prediction of symptom severity in children with autism.
        JAMA Psychiatry. 2013; 70: 869-879
        • Deshpande G.
        • Libero L.E.
        • Sreenivasan K.R.
        • et al.
        Identification of neural connectivity signatures of autism using machine learning.
        Front Hum Neurosci. 2013; 7: 670
        • Lange N.
        • Dubray M.B.
        • Lee J.E.
        • et al.
        Atypical diffusion tensor hemispheric asymmetry in autism.
        Autism Res. 2010; 3: 350-358
        • Fang P.
        • Zeng L.-L.
        • Shen H.
        • et al.
        Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging.
        PloS One. 2012; 7: e45972
        • Karageorgiou E.
        • Schulz S.C.
        • Gollub R.L.
        • et al.
        Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses.
        Neuroinformatics. 2011; 9: 321-333
        • Korgaonkar M.S.
        • Williams L.M.
        • Song Y.J.
        • et al.
        Diffusion tensor imaging predictors of treatment outcomes in major depressive disorder.
        Br J Psychiatry J Ment Sci. 2014; 205: 321-328
        • Undurraga J.
        • Baldessarini R.J.
        Randomized, placebo-controlled trials of antidepressants for acute major depression: thirty-year meta-analytic review.
        Neuropsychopharmacology. 2012; 37: 851-864
        • Koen N.
        • Stein D.J.
        Pharmacotherapy of anxiety disorders: a critical review.
        Dialogues Clin Neurosci. 2011; 13: 423-437
        • van Waarde J.A.
        • Scholte H.S.
        • van Oudheusden L.J.B.
        • et al.
        A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression.
        Mol Psychiatry. 2014 Aug 5; https://doi.org/10.1038/mp.2014.78
        • Reis Marques T.
        • Taylor H.
        • Chaddock C.
        • et al.
        White matter integrity as a predictor of response to treatment in first episode psychosis.
        Brain J Neurol. 2014; 137: 172-182
        • Mitelman S.A.
        • Newmark R.E.
        • Torosjan Y.
        • et al.
        White matter fractional anisotropy and outcome in schizophrenia.
        Schizophr Res. 2006; 87: 138-159
        • Mitelman S.A.
        • Canfield E.L.
        • Newmark R.E.
        • et al.
        Longitudinal assessment of gray and white matter in chronic schizophrenia: a combined diffusion-tensor and structural magnetic resonance imaging study.
        Open Neuroimaging J. 2009; 3: 31-47
        • Luck D.
        • Buchy L.
        • Czechowska Y.
        • et al.
        Fronto-temporal disconnectivity and clinical short-term outcome in first episode psychosis: a DTI-tractography study.
        J Psychiatr Res. 2011; 45: 369-377
        • Fung G.
        • Cheung C.
        • Chen E.
        • et al.
        MRI predicts remission at 1 year in first-episode schizophrenia in females with larger striato-thalamic volumes.
        Neuropsychobiology. 2014; 69: 243-248
        • Szeszko P.R.
        • Narr K.L.
        • Phillips O.R.
        • et al.
        Magnetic resonance imaging predictors of treatment response in first-episode schizophrenia.
        Schizophr Bull. 2012; 38: 569-578
        • Ardekani B.A.
        • Tabesh A.
        • Sevy S.
        • et al.
        Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers.
        Hum Brain Mapp. 2011; 32: 1-9
        • Bryant R.A.
        • Felmingham K.
        • Whitford T.J.
        • et al.
        Rostral anterior cingulate volume predicts treatment response to cognitive-behavioural therapy for posttraumatic stress disorder.
        J Psychiatry Neurosci. 2008; 33: 142-146
        • Bryant R.A.
        • Felmingham K.
        • Kemp A.
        • et al.
        Amygdala and ventral anterior cingulate activation predicts treatment response to cognitive behaviour therapy for post-traumatic stress disorder.
        Psychol Med. 2008; 38: 555-561
        • Collin J.
        Universal cures for idiosyncratic illnesses: a genealogy of therapeutic reasoning in the mental health field.
        Health (London). 2014 Aug 18; (pii: 1363459314545695.)
        • Bruchmüller K.
        • Margraf J.
        • Schneider S.
        Is ADHD diagnosed in accord with diagnostic criteria? Overdiagnosis and influence of client gender on diagnosis.
        J Consult Clin Psychol. 2012; 80: 128-138
        • Ghouse A.A.
        • Sanches M.
        • Zunta-Soares G.
        • et al.
        Overdiagnosis of bipolar disorder: a critical analysis of the literature.
        ScientificWorldJournal. 2013; 2013: 297087
        • Phillips M.L.
        • Kupfer D.J.
        Bipolar disorder diagnosis: challenges and future directions.
        Lancet. 2013; 381: 1663-1671
        • Green R.C.
        • Roberts J.S.
        • Cupples L.A.
        • et al.
        Disclosure of APOE genotype for risk of Alzheimer's disease.
        N Engl J Med. 2009; 361: 245-254
        • Ashida S.
        • Koehly L.M.
        • Roberts J.S.
        • et al.
        The role of disease perceptions and results sharing in psychological adaptation after genetic susceptibility testing: the REVEAL study.
        Eur J Hum Genet. 2010; 18: 1296-1301