Advertisement

Will PET Amyloid Imaging Lead to Overdiagnosis of Alzheimer Dementia?

  • Jacob G. Dubroff
    Correspondence
    Address correspondence to: J.G.D.
    Affiliations
    Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, 110 Donner Building, Philadelphia, PA 19104
    Search for articles by this author
  • Ilya M. Nasrallah
    Affiliations
    Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, 110 Donner Building, Philadelphia, PA 19104
    Search for articles by this author
      Alzheimer disease (AD), a progressive neurodegenerative disease that causes dementia, affects millions of elderly Americans and represents a growing problem with the aging of the population. There has been an increasing effort for improved and earlier diagnosis for AD. Several newly developed radiolabeled compounds targeting β-amyloid plaques, one of the major pathologic biomarkers of AD, have recently become available for clinical use. These radiopharmaceuticals allow for in vivo noninvasive visualization of abnormal β-amyloid deposits in the brain using positron emission tomography (PET). Amyloid PET imaging has demonstrated high sensitivity for pathologic cerebral amyloid deposition in multiple studies. Principal drawbacks to this new diagnostic test are declining specificity in older age groups and uncertain clinical role given lack of disease-modifying therapy for AD. Although there is strong evidence for the utility of amyloid PET in certain situations, detailed in a set of guidelines for appropriate use from the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging, the question of overdiagnosis, the diagnosis of a disease that would result in neither symptoms nor deaths, using this new medical tool needs to be carefully considered in light of efforts to secure reimbursement for the new technology that is already widely available for use as a clinical tool.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. 2014 Alzheimer's disease facts and figures.
        Alzheimers Dement. 2014; 10: e47-e92
        • Querfurth H.W.
        • LaFerla F.M.
        Alzheimer's disease.
        N Engl J Med. 2010; 362: 329-344
        • Weuve J.
        • Hebert L.E.
        • Scherr P.A.
        • et al.
        Prevalence of Alzheimer disease in US states.
        Epidemiology. 2015; 26: e4-e6
        • Ferri C.P.
        • Prince M.
        • Brayne C.
        • et al.
        Global prevalence of dementia: a Delphi consensus study.
        Lancet. 2005; 366: 2112-2117
        • Brookmeyer R.
        • Johnson E.
        • Ziegler-Graham K.
        • et al.
        Forecasting the global burden of Alzheimer's disease.
        Alzheimers Dement. 2007; 3: 186-191
      2. World Alzheimer report 2011: the benefits of early diagnosis and intervention. 2011.

        • Colucci L.
        • Bosco M.
        • Fasanaro A.M.
        • et al.
        Alzheimer's disease costs: what we know and what we should take into account.
        J Alzheimers Dis. 2014; 42: 1311-1324
        • van den Dungen P.
        • van Kuijk L.
        • van Marwijk H.
        • et al.
        Preferences regarding disclosure of a diagnosis of dementia: a systematic review.
        Int Psychogeriatr. 2014; 26: 1603-1618
        • Brunet M.
        Targets for dementia diagnoses will lead to overdiagnosis.
        BMJ. 2014; 348: g2224
        • O'Brien J.T.
        • Burns A.
        Clinical practice with anti-dementia drugs: a revised (second) consensus statement from the British Association for Psychopharmacology.
        J Psychopharmacol. 2011; 25: 997-1019
        • Le Couteur D.G.
        • Doust J.
        • Creasey H.
        • et al.
        Political drive to screen for pre-dementia: not evidence based and ignores the harms of diagnosis.
        BMJ. 2013; 347: f5125
        • Caligiuri M.P.
        • Rockwell E.
        • Jeste D.V.
        Extrapyramidal side effects in patients with Alzheimer's disease treated with low-dose neuroleptic medication.
        Am J Geriatr Psychiatry. 1998; 6: 75-82
        • Wicklund S.
        • Wright M.
        Donepezil-induced mania.
        J Neuropsychiatry Clin Neurosci. 2012; 24: E27
        • Pratt R.D.
        • Perdomo C.A.
        • Surick I.W.
        • et al.
        Donepezil: tolerability and safety in Alzheimer's disease.
        Int J Clin Pract. 2002; 56: 710-717
        • Welch H.G.
        Overdiagnosis and mammography screening.
        BMJ. 2009; 339: b1425
        • Welch H.G.
        • Black W.C.
        Overdiagnosis in cancer.
        J Natl Cancer Inst. 2010; 102: 605-613
        • Ahn H.S.
        • Kim H.J.
        • Welch H.G.
        Korea's thyroid-cancer “epidemic”—screening and overdiagnosis.
        N Engl J Med. 2014; 371: 1765-1767
        • Hiltunen M.
        • van Groen T.
        • Jolkkonen J.
        Functional roles of amyloid-beta protein precursor and amyloid-beta peptides: evidence from experimental studies.
        J Alzheimers Dis. 2009; 18: 401-412
        • Holtzman D.M.
        • Morris J.C.
        • Goate A.M.
        Alzheimer's disease: the challenge of the second century.
        Sci Transl Med. 2011; 3: 77sr1
        • Holtzman D.M.
        • Goate A.
        • Kelly J.
        • et al.
        Mapping the road forward in Alzheimer's disease.
        Sci Transl Med. 2011; 3: 114ps48
        • Arriagada P.V.
        • Growdon J.H.
        • Hedley-Whyte E.T.
        • et al.
        Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease.
        Neurology. 1992; 42: 631-639
        • Beach T.G.
        • Monsell S.E.
        • Phillips L.E.
        • et al.
        Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010.
        J Neuropathol Exp Neurol. 2012; 71: 266-273
        • Albert M.S.
        • DeKosky S.T.
        • Dickson D.
        • et al.
        The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.
        Alzheimers Dement. 2011; 7: 270-279
        • Shaw L.M.
        • Vanderstichele H.
        • Knapik-Czajka M.
        • et al.
        Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects.
        Ann Neurol. 2009; 65: 403-413
        • Vemuri P.
        • Wiste H.J.
        • Weigand S.D.
        • et al.
        MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations.
        Neurology. 2009; 73: 287-293
        • Zwan M.
        • van Harten A.
        • Ossenkoppele R.
        • et al.
        Concordance between cerebrospinal fluid biomarkers and [11C]PIB PET in a memory clinic cohort.
        J Alzheimers Dis. 2014; 41: 801-807
        • Zetterberg H.
        • Lautner R.
        • Skillback T.
        • et al.
        CSF in Alzheimer's disease.
        Adv Clin Chem. 2014; 65: 143-172
        • Mattsson N.
        • Insel P.S.
        • Donohue M.
        • et al.
        Independent information from cerebrospinal fluid amyloid-beta and florbetapir imaging in Alzheimer's disease.
        Brain. 2015; 138: 772-783
        • Prestia A.
        • Caroli A.
        • Herholz K.
        • et al.
        Diagnostic accuracy of markers for prodromal Alzheimer's disease in independent clinical series.
        Alzheimers Dement. 2013; 9: 677-686
        • Dickerson B.C.
        • Bakkour A.
        • Salat D.H.
        • et al.
        The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals.
        Cereb Cortex. 2009; 19: 497-510
        • Misra C.
        • Fan Y.
        • Davatzikos C.
        Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI.
        NeuroImage. 2009; 44: 1415-1422
        • de Flores R.
        • La Joie R.
        • Landeau B.
        • et al.
        Effects of age and Alzheimer's disease on hippocampal subfields: Comparison between manual and freesurfer volumetry.
        Hum Brain Mapp. 2015; 36: 463-474
        • Frisoni G.B.
        • Jack C.R.
        • Bocchetta M.
        • et al.
        The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: Evidence of validity.
        Alzheimers Dement. 2014;
        • Mulder E.R.
        • de Jong R.A.
        • Knol D.L.
        • et al.
        Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST.
        NeuroImage. 2014; 92: 169-181
        • Yushkevich P.A.
        • Pluta J.B.
        • Wang H.
        • et al.
        Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment.
        Hum Brain Mapp. 2015; 36: 258-287
        • Douaud G.
        • Menke R.A.
        • Gass A.
        • et al.
        Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer's disease.
        J Neurosci. 2013; 33: 2147-2155
        • Hanseeuw B.J.
        • Van Leemput K.
        • Kavec M.
        • et al.
        Mild cognitive impairment: differential atrophy in the hippocampal subfields.
        AJNR Am J Neuroradiol. 2011; 32: 1658-1661
        • Tosun D.
        • Joshi S.
        • Weiner M.W.
        Alzheimer's disease neuroimaging I. Neuroimaging predictors of brain amyloidosis in mild cognitive impairment.
        Ann Neurol. 2013; 74: 188-198
        • Vos S.J.
        • van Rossum I.A.
        • Verhey F.
        • et al.
        Prediction of Alzheimer disease in subjects with amnestic and nonamnestic MCI.
        Neurology. 2013; 80: 1124-1132
        • Hedden T.
        • Oh H.
        • Younger A.P.
        • et al.
        Meta-analysis of amyloid-cognition relations in cognitively normal older adults.
        Neurology. 2013; 80: 1341-1348
        • Friedland R.P.
        • Jagust W.J.
        • Huesman R.H.
        • et al.
        Regional cerebral glucose transport and utilization in Alzheimer's disease.
        Neurology. 1989; 39: 1427-1434
        • Bohnen N.I.
        • Djang D.S.
        • Herholz K.
        • et al.
        Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature.
        J Nucl Med. 2012; 53: 59-71
        • Newberg A.B.
        • Arnold S.E.
        • Wintering N.
        • et al.
        Initial clinical comparison of 18F-florbetapir and 18F-FDG PET in patients with Alzheimer disease and controls.
        J Nucl Med. 2012; 53: 902-907
        • Klunk W.E.
        • Engler H.
        • Nordberg A.
        • et al.
        Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B.
        Ann Neurol. 2004; 55: 306-319
        • Mathis C.A.
        • Mason N.S.
        • Lopresti B.J.
        • et al.
        Development of positron emission tomography beta-amyloid plaque imaging agents.
        Semin Nucl Med. 2012; 42: 423-432
        • Wong D.F.
        • Rosenberg P.B.
        • Zhou Y.
        • et al.
        In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18).
        J Nucl Med. 2010; 51: 913-920
        • Wolk D.A.
        • Grachev I.D.
        • Buckley C.
        • et al.
        Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology.
        Arch Neurol. 2011; 68: 1398-1403
        • Villemagne V.L.
        • Ong K.
        • Mulligan R.S.
        • et al.
        Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias.
        J Nucl Med. 2011; 52: 1210-1217
        • Landau S.M.
        • Thomas B.A.
        • Thurfjell L.
        • et al.
        Amyloid PET imaging in Alzheimer's disease: a comparison of three radiotracers.
        Eur J Nucl Med Mol Imaging. 2014; 41: 1398-1407
        • Landau S.M.
        • Breault C.
        • Joshi A.D.
        • et al.
        Amyloid-beta imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods.
        J Nucl Med. 2013; 54: 70-77
        • Rowe C.C.
        • Pejoska S.
        • Mulligan R.S.
        • et al.
        Head-to-head comparison of 11C-PiB and 18F-AZD4694 (NAV4694) for beta-amyloid imaging in aging and dementia.
        J Nucl Med. 2013; 54: 880-886
        • Jack Jr., C.R.
        • Wiste H.J.
        • Lesnick T.G.
        • et al.
        Brain beta-amyloid load approaches a plateau.
        Neurology. 2013; 80: 890-896
        • Clark C.M.
        • Schneider J.A.
        • Bedell B.J.
        • et al.
        Use of florbetapir-PET for imaging beta-amyloid pathology.
        JAMA. 2011; 305: 275-283
        • Clark C.M.
        • Pontecorvo M.J.
        • Beach T.G.
        • et al.
        Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study.
        Lancet Neurol. 2012; 11: 669-678
        • Rabinovici G.D.
        • Furst A.J.
        • O'Neil J.P.
        • et al.
        11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration.
        Neurology. 2007; 68: 1205-1212
        • Vandenberghe R.
        • Adamczuk K.
        • Dupont P.
        • et al.
        Amyloid PET in clinical practice: Its place in the multidimensional space of Alzheimer's disease.
        Neuroimage Clin. 2013; 2: 497-511
        • Riley K.P.
        • Snowdon D.A.
        • Markesbery W.R.
        Alzheimer's neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun Study.
        Anna Neurol. 2002; 51: 567-577
        • Zhang S.
        • Smailagic N.
        • Hyde C.
        • et al.
        (11)C-PIB-PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).
        Cochrane Database Syst Rev. 2014; 7: CD010386
        • Rowe C.C.
        • Ellis K.A.
        • Rimajova M.
        • et al.
        Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging.
        Neurobiol Aging. 2010; 31: 1275-1283
        • Aizenstein H.J.
        • Nebes R.D.
        • Saxton J.A.
        • et al.
        Frequent amyloid deposition without significant cognitive impairment among the elderly.
        Arch Neurol. 2008; 65: 1509-1517
        • Jha S.
        Overdiagnosis versus overtreatment: a false dichotomy.
        Radiology. 2014; 270: 628
        • Javitt M.C.
        Section editor's notebook: breast cancer screening and overdiagnosis unmasked.
        AJR Am J Roentgenol. 2014; 202: 259-261
        • Shokouhi S.
        • Claassen D.
        • Kang H.
        • et al.
        Longitudinal progression of cognitive decline correlates with changes in the spatial pattern of brain 18F-FDG PET.
        J Nucl Med. 2013; 54: 1564-1569
        • Kadir A.
        • Almkvist O.
        • Forsberg A.
        • et al.
        Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer's disease.
        Neurobiol Aging. 2012; 33: 198.e1-198.e14
        • Rowe C.C.
        • Bourgeat P.
        • Ellis K.A.
        • et al.
        Predicting Alzheimer disease with beta-amyloid imaging: results from the Australian imaging, biomarkers, and lifestyle study of ageing.
        Ann Neurol. 2013; 74: 905-913
        • Rabinovici G.D.
        • Rosen H.J.
        • Alkalay A.
        • et al.
        Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD.
        Neurology. 2011; 77: 2034-2042
        • Johnson K.A.
        • Minoshima S.
        • Bohnen N.I.
        • et al.
        Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association.
        J Nucl Med. 2013; 54: 476-490
      3. Jacques L, Jensen TS, Rollins J, et al. Beta amyloid positron emission tomography in dementia and neurodegenerative disease (CAG-00431N). In: Services CfMaM ed. 2013.

        • Florbetapir (F-18) Assessment Report
        EMA committee for medicinal products for human use.
        European Medicines Agency, 2013
        • Florbetaben (F-18) Assessment Report
        EMA committee for medicinal products for human use.
        European Medicines Agency, 2014
        • Flutemetamol (F-18) Assessment Report
        EMA committee for medicinal products for human use.
        European Medicines Agency, 2014