Rationale and Objectives
Accurate assessment of air density used to quantitatively characterize amount and
distribution of emphysema in chronic obstructive pulmonary disease (COPD) subjects
has remained challenging. Hounsfield units (HU) within tracheal air can be considerably
less negative than –1000 HU. This study has sought to characterize the effects of
improved scatter correction used in dual-source pulmonary computed tomography (CT).
Materials and Methods
Dual-source dual-energy (DSDE) and single-source (SS) scans taken at multiple energy
levels and scan settings were acquired for quantitative comparison using anesthetized
ovine (n = 6), swine (n = 13), and a lung phantom. Data were evaluated for the lung, inferior vena cava,
and tracheal segments. To minimize the effect of cross-scatter, the phantom scans
in the DSDE mode were obtained by reducing the current of one of the tubes to near
zero.
Results
A significant shift in mean HU values in the tracheal regions of animals and the phantom
is observed, with values consistently closer to −1000 HU in DSDE mode. HU values associated
with SS mode demonstrated a positive shift of up to 32 HU. In vivo tracheal air measurements
demonstrated considerable variability with SS scanning, whereas these values were
more consistent with DSDE imaging. Scatter effects in the lung parenchyma differed
from adjacent tracheal measures.
Conclusion
Data suggest that the scatter correction introduced into the dual-energy mode of imaging
has served to provide more accurate CT lung density measures sought to quantitatively
assess the presence and distribution of emphysema in COPD subjects. Data further suggest
that CT images, acquired without adequate scatter correction, cannot be corrected
by linear algorithms given the variability in tracheal air HU values and the independent
scatter effects on lung parenchyma.
Key Words
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Academic RadiologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Quantitative CT assessment of chronic obstructive pulmonary disease.Radiographics. 2010; 30: 55-66
- Quantitative CT of fibrotic interstitial lung disease.Chest. 2007; 131: 643-644
- Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique.Radiology. 2010; 256: 985-997
- Quantitative imaging of COPD.J Thorac Imaging. 2009; 24: 189-194
- The National Lung Screening Trial: overview and study design.Radiology. 2011; 258: 243-253
- Association of COPD candidate genes with computed tomography emphysema and airway phenotypes in severe COPD.Eur Resp J. 2011; 37: 39-43
- Identification of early interstitial lung disease in smokers from the COPDGene Study.Acad Radiol. 2010; 17: 48-53
- Variability in densitometric assessment of pulmonary emphysema with computed tomography.Invest Radiol. 2005; 40: 777-783
- Pulmonary emphysema: subjective visual grading versus objective quantification with macroscopic morphometry and thin-section CT densitometry.Radiology. 1999; 211: 851-858
- Regional distribution of emphysema: correlation of high-resolution CT with pulmonary function tests in unselected smokers.Radiology. 1992; 183: 457-463
- Expiratory CT scans for chronic airway disease: correlation with pulmonary function test results.AJR Am J Roentgenol. 1998; 170: 301-307
- Expiratory computed tomography for assessment of suspected pulmonary emphysema.Chest. 1991; 99: 1357-1366
- Imaging biomarkers for patient selection and treatment planning in emphysema.Imaging Med. 2010; 2: 565-573
Buckler AJ, Mozley PD, Schwartz L, et al. Volumetric CT in lung cancer: an example for the qualification of imaging as a biomarker. 2010; 17:107-115
- The role of CT scanning in multidimensional phenotyping of COPD.Chest. 2011; 140: 634-642
- Imaging the lungs in patients with pulmonary emphysema.J Thorac Imaging. 2009; 24: 163-170
- Quantitative computed tomography of lung parenchyma in chronic obstructive pulmonary disease: an overview.Proc Am Thorac Soc. 2008; 5: 915-918
- Quantitative computed tomography of chronic obstructive pulmonary disease.Acad Radiol. 2005; 12: 1457-1463
- Report of a workshop: quantitative computed tomography scanning in longitudinal studies of emphysema.Eur Resp J. 2004; 23: 769-775
- Correlation between annual change in health status and computer tomography derived lung density in subjects with alpha1-antitrypsin deficiency.Thorax. 2003; 58: 1027-1030
- Quantitative computed tomography assessment of airway wall dimensions: current status and potential applications for phenotyping chronic obstructive pulmonary disease.Proc Am Thorac Soc. 2008; 5: 940-945
- A structural and functional assessment of the lung via multidetector-row computed tomography: phenotyping chronic obstructive pulmonary disease.Proc Am Thorac Soc. 2006; 3: 519-534
- Exploring the role of CT densitometry: a randomised study of augmentation therapy in alpha1-antitrypsin deficiency.Eur Resp J. 2009; 33: 1345-1353
- Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: image reconstruction and assessment of image quality.Med Phys. 2009; 36: 5641-5653
- Material differentiation by dual energy CT: initial experience.Eur Radiol. 2007; 17: 1510-1517
- Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT.Med Phys. 2009; 36: 1019
- Dual-source dual-energy CT with additional tin filtration: dose and image quality evaluation in phantoms and in vivo.AJR Am J Roentgenol. 2010; 195: 1164-1174
- Strategies for scatter correction in dual source CT.Med Phys. 2010; 37: 5971-5992
- Pulmonary Analysis Software Suite 9.0 Integrating quantitative measures of function with structural analyses.in: Brown M. First International Workshop on Pulmonary Image Analysis. 2008: 283-292
- COPDGene Phantom: quality control of quantitative lung imaging in a multi-center trial.Am J Resp Crit Care Med. 2010; 181: A5519
- Correction of cross-scatter in next generation dual source CT (DSCT) scanners.Proc SPIE. 2008; 6913: 69131W
- Efficient object scatter correction algorithm for third and fourth generation CT scanners.Eur Radiol. 1999; 9: 563-569
- Scatter correction method for X-ray CT using primary modulation: theory and preliminary results.IEEE Trans Med Imaging. 2006; 25: 1573-1587
- A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT.Med Phys. 2006; 33: 187-197
- Effect of beam hardening on arterial enhancement in thoracoabdominal CT angiography with increasing patient size: an in vitro and in vivo study.Radiology. 2010; 256: 528-535
Article info
Publication history
Accepted:
April 9,
2013
Received:
October 17,
2012
Identification
Copyright
© 2013 AUR. Published by Elsevier Inc. All rights reserved.