Advertisement

Methods and Challenges in Quantitative Imaging Biomarker Development

      Academic radiology is poised to play an important role in the development and implementation of quantitative imaging (QI) tools. This article, drafted by the Association of University Radiologists Radiology Research Alliance Quantitative Imaging Task Force, reviews current issues in QI biomarker research. We discuss motivations for advancing QI, define key terms, present a framework for QI biomarker research, and outline challenges in QI biomarker development. We conclude by describing where QI research and development is currently taking place and discussing the paramount role of academic radiology in this rapidly evolving field.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • DiSantis D.J.
        Early American Radiology: the pioneer years.
        AJR Am J Roentgenol. 1986; 147: 850-853
        • Buckler A.J.
        • Bresolin L.
        • Dunnick N.R.
        • et al.
        • Group
        A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging.
        Radiology. 2011; 258: 906-914
        • Buckler A.J.
        • Paik D.
        • Ouellette M.
        • et al.
        A novel knowledge representation framework for the statistical validation of quantitative imaging biomarkers.
        J Digit Imaging. 2013; 26: 614-629
        • Jaffer F.A.
        • Weissleder R.
        Molecular imaging in the clinical arena.
        JAMA. 2005; 293: 855-862
        • Buckler A.J.
        • Bresolin L.
        • Dunnick N.R.
        • et al.
        Quantitative imaging test approval and biomarker qualification: interrelated but distinct activities.
        Radiology. 2011; 259: 875-884
        • Meyer C.R.
        • Armato S.G.
        • Fenimore C.P.
        • et al.
        Quantitative imaging to assess tumor response to therapy: common themes of measurement, truth data, and error sources.
        Transl Oncol. 2009; 2: 198-210
        • Biomarkers Definitions Working Group
        Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.
        Clin Pharmacol Ther. 2001; 69: 89-95
        • Kessler L.G.
        • Barnhart H.X.
        • Buckler A.J.
        • et al.
        The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions.
        Stat Methods Med Res. 2014;
        • Rosenkrantz A.B.
        • Mendiratta-Lala M.
        • Bartholmai B.J.
        • et al.
        Clinical utility of quantitative imaging.
        Acad Radiol. 2015; 22: 33-49
        • Arksey H.
        • O'Malley L.
        Scoping studies: towards a methodological framework.
        Int J Soc Res Methodol. 2005; 8: 19-32
        • Sullivan D.C.
        Imaging as a quantitative science.
        Radiology. 2008; 248: 328-332
        • Boone J.M.
        Radiological interpretation 2020: toward quantitative image assessment.
        Med Phys. 2007; 34: 4173-4179
        • Choong M.K.
        • Tsafnat G.
        The implications of biomarker evidence for systematic reviews.
        BMC Med Res Methodol. 2012; 12: 176
        • Eisenhauer E.A.
        • Therasse P.
        • Bogaerts J.
        • et al.
        New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).
        Eur J Cancer. 2009; 45: 228-247
        • Vidaurre T.
        • Wilkerson J.
        • Simon R.
        • et al.
        Stable disease is not preferentially observed with targeted therapies and as currently defined has limited value in drug development.
        Cancer J. 2009; 15: 366-373
        • Buyse M.
        • Thirion P.
        • Carlson R.W.
        • et al.
        Relation between tumour response to first-line chemotherapy and survival in advanced colorectal cancer: a meta-analysis. Meta-Analysis Group in Cancer.
        Lancet. 2000; 356: 373-378
        • Slamon D.J.
        • Leyland-Jones B.
        • Shak S.
        • et al.
        Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.
        N Engl J Med. 2001; 344: 783-792
        • Hurwitz H.
        • Fehrenbacher L.
        • Novotny W.
        • et al.
        Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.
        N Engl J Med. 2004; 350: 2335-2342
        • Johnson D.H.
        • Fehrenbacher L.
        • Novotny W.F.
        • et al.
        Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer.
        J Clin Oncol. 2004; 22: 2184-2191
        • Jubb A.M.
        • Oates A.J.
        • Holden S.
        • et al.
        Predicting benefit from anti-angiogenic agents in malignancy.
        Nat Rev Cancer. 2006; 6: 626-635
        • Workman P.
        • Aboagye E.O.
        • Chung Y.L.
        • et al.
        Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies.
        J Natl Cancer Inst. 2006; 98: 580-598
        • Desar I.M.
        • van Herpen C.M.
        • van Laarhoven H.W.
        • et al.
        Beyond RECIST: molecular and functional imaging techniques for evaluation of response to targeted therapy.
        Cancer Treat Rev. 2009; 35: 309-321
        • Abramson R.G.
        • Yankeelov T.E.
        Imaging biomarkers and surrogate endpoints in oncology clinical trials.
        in: Luna A. Vilanova J.C. Hygino Da Cruz L.C. Functional imaging in oncology. Springer, Heidelberg2014
        • O'Connor J.P.
        • Jackson A.
        • Asselin M.C.
        • et al.
        Quantitative imaging biomarkers in the clinical development of targeted therapeutics: current and future perspectives.
        Lancet Oncol. 2008; 9: 766-776
        • Garcia-Donas J.
        • Rodriguez-Antona C.
        • Jonasch E.
        Molecular markers to predict response to therapy.
        Semin Oncol. 2013; 40: 444-458
        • Bhooshan N.
        • Giger M.L.
        • Jansen S.A.
        • et al.
        Cancerous breast lesions on dynamic contrast-enhanced MR images: computerized characterization for image-based prognostic markers.
        Radiology. 2010; 254: 680-690
        • Fuleihan G.E.
        • Testa M.A.
        • Angell J.E.
        • et al.
        Reproducibility of DXA absorptiometry: a model for bone loss estimates.
        J Bone Miner Res. 1995; 10: 1004-1014
        • Hua X.
        • Lee S.
        • Yanovsky I.
        • et al.
        Optimizing power to track brain degeneration in Alzheimer's disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects.
        Neuroimage. 2009; 48: 668-681
        • van Klaveren R.J.
        • Oudkerk M.
        • Prokop M.
        • et al.
        Management of lung nodules detected by volume CT scanning.
        N Engl J Med. 2009; 361: 2221-2229
        • Wahl R.L.
        • Jacene H.
        • Kasamon Y.
        • et al.
        From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors.
        J Nucl Med. 2009; 50: 122S-150S
        • Wintermark M.
        • Albers G.W.
        • Alexandrov A.V.
        • et al.
        Acute stroke imaging research roadmap.
        AJNR Am J Neuroradiol. 2008; 29: e23-e30
        • Merckel L.G.
        • Verkooijen H.M.
        • Peters N.H.
        • et al.
        The added diagnostic value of dynamic contrast-enhanced MRI at 3.0 T in nonpalpable breast lesions.
        PLoS One. 2014; 9: e94233
        • Wang J.
        • Liu H.
        • Sun J.
        • et al.
        Varying correlation between 18F-fluorodeoxyglucose positron emission tomography and dynamic contrast-enhanced MRI in carotid atherosclerosis: implications for plaque inflammation.
        Stroke. 2014; 45: 1842-1845
        • Kickingereder P.
        • Sahm F.
        • Wiestler B.
        • et al.
        Evaluation of microvascular permeability with dynamic contrast-enhanced MRI for the differentiation of primary CNS lymphoma and glioblastoma: radiologic-pathologic correlation.
        AJNR Am J Neuroradiol. 2014; 35: 1503-1508
        • Lim I.
        • Noh W.C.
        • Park J.
        • et al.
        The combination of FDG PET and dynamic contrast-enhanced MRI improves the prediction of disease-free survival in patients with advanced breast cancer after the first cycle of neoadjuvant chemotherapy.
        Eur J Nucl Med Mol Imaging. 2014; 41: 1852-1860
        • Kurland B.F.
        • Gerstner E.R.
        • Mountz J.M.
        • et al.
        Promise and pitfalls of quantitative imaging in oncology clinical trials.
        Magn Reson Imaging. 2012; 30: 1301-1312
        • Institute of Medicine
        Evaluation of biomarkers and surrogate endpoints in chronic disease.
        National Academies Press, Washington, DC2010
        • Obuchowski N.A.
        • Reeves A.P.
        • Huang E.P.
        • et al.
        Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons.
        Stat Methods Med Res. 2014;
        • Raunig D.L.
        • McShane L.M.
        • Pennello G.
        • et al.
        Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment.
        Stat Methods Med Res. 2014;
        • Padhani A.R.
        • Hayes C.
        • Landau S.
        • et al.
        Reproducibility of quantitative dynamic MRI of normal human tissues.
        NMR Biomed. 2002; 15: 143-153
        • Yankeelov T.E.
        • DeBusk L.M.
        • Billheimer D.D.
        • et al.
        Repeatability of a reference region model for analysis of murine DCE-MRI data at 7T.
        J Magn Reson Imaging. 2006; 24: 1140-1147
        • Barnes S.L.
        • Whisenant J.G.
        • Loveless M.E.
        • et al.
        Assessing the reproducibility of dynamic contrast enhanced magnetic resonance imaging in a murine model of breast cancer.
        Magn Reson Med. 2013; 69: 1721-1734
        • Dula A.N.
        • Arlinghaus L.R.
        • Dortch R.D.
        • et al.
        Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response.
        Magn Reson Med. 2013; 70: 216-224
        • Alonzi R.
        • Taylor N.J.
        • Stirling J.J.
        • et al.
        Reproducibility and correlation between quantitative and semiquantitative dynamic and intrinsic susceptibility-weighted MRI parameters in the benign and malignant human prostate.
        J Magn Reson Imaging. 2010; 32: 155-164
        • Whisenant J.G.
        • Peterson T.E.
        • Fluckiger J.U.
        • et al.
        Reproducibility of static and dynamic (18)F-FDG, (18)F-FLT, and (18)F-FMISO microPET studies in a murine model of HER2+ breast cancer.
        Mol Imaging Biol. 2013; 15: 87-96
        • Tseng J.R.
        • Dandekar M.
        • Subbarayan M.
        • et al.
        Reproducibility of 3′-deoxy-3′-(18)F-fluorothymidine microPET studies in tumor xenografts in mice.
        J Nucl Med. 2005; 46: 1851-1857
        • Dandekar M.
        • Tseng J.R.
        • Gambhir S.S.
        Reproducibility of 18F-FDG microPET studies in mouse tumor xenografts.
        J Nucl Med. 2007; 48: 602-607
        • Sim J.
        • Wright C.C.
        The kappa statistic in reliability studies: use, interpretation, and sample size requirements.
        Phys Ther. 2005; 85: 257-268
        • Beaton D.E.
        • Katz J.N.
        • Fossel A.H.
        • et al.
        Measuring the whole or the parts? Validity, reliability, and responsiveness of the disabilities of the arm, shoulder and hand outcome measure in different regions of the upper extremity.
        J Hand Ther. 2001; 14: 128-146
        • Bruton A.
        • Conway J.H.
        • Holgate S.T.
        Reliability: what is it, and how is it measured?.
        Physiotherapy. 2000; 86: 94-99
        • Katz R.
        Biomarkers and surrogate markers: an FDA perspective.
        NeuroRx. 2004; 1: 189-195
        • Bruns A.
        • Kunnecke B.
        • Risterucci C.
        • et al.
        Validation of cerebral blood perfusion imaging as a modality for quantitative pharmacological MRI in rats.
        Magn Reson Med. 2009; 61: 1451-1458
        • Yoo A.J.
        • Sheth K.N.
        • Kimberly W.T.
        • et al.
        Validating imaging biomarkers of cerebral edema in patients with severe ischemic stroke.
        J Stroke Cerebrovasc Dis. 2013; 22: 742-749
        • Wintermark M.
        • Albers G.W.
        • Broderick J.P.
        • et al.
        Acute stroke imaging research roadmap II.
        Stroke. 2013; 44: 2628-2639
        • Huynh T.J.
        • Flaherty M.L.
        • Gladstone D.J.
        • et al.
        Multicenter accuracy and interobserver agreement of spot sign identification in acute intracerebral hemorrhage.
        Stroke. 2014; 45: 107-112
        • Buyse M.
        • Michiels S.
        • Sargent D.J.
        • et al.
        Integrating biomarkers in clinical trials.
        Expert Rev Mol Diagn. 2011; 11: 171-182
        • Puntmann V.O.
        How-to guide on biomarkers: biomarker definitions, validation and applications with examples from cardiovascular disease.
        Postgrad Med J. 2009; 85: 538-545
        • Mandrekar S.J.
        • Sargent D.J.
        Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges.
        J Clin Oncol. 2009; 27: 4027-4034
        • Buyse M.
        • Sargent D.J.
        • Grothey A.
        • et al.
        Biomarkers and surrogate end points—the challenge of statistical validation.
        Nat Rev Clin Oncol. 2010; 7: 309-317
        • Sargent D.J.
        • Rubinstein L.
        • Schwartz L.
        • et al.
        Validation of novel imaging methodologies for use as cancer clinical trial end-points.
        Eur J Cancer. 2009; 45: 290-299
        • Sargent D.J.
        • Hayes D.F.
        Assessing the measure of a new drug: is survival the only thing that matters?.
        J Clin Oncol. 2008; 26: 1922-1923
        • Hoering A.
        • Leblanc M.
        • Crowley J.J.
        Randomized phase III clinical trial designs for targeted agents.
        Clin Cancer Res. 2008; 14: 4358-4367
        • Freidlin B.
        • McShane L.M.
        • Korn E.L.
        Randomized clinical trials with biomarkers: design issues.
        J Natl Cancer Inst. 2010; 102: 152-160
        • Villaruz L.C.
        • Socinski M.A.
        The clinical viewpoint: definitions, limitations of RECIST, practical considerations of measurement.
        Clin Cancer Res. 2013; 19: 2629-2636
        • Green E.
        • Yothers G.
        • Sargent D.J.
        Surrogate endpoint validation: statistical elegance versus clinical relevance.
        Stat Methods Med Res. 2008; 17: 477-486
        • Smith J.J.
        • Sorensen A.G.
        • Thrall J.H.
        Biomarkers in imaging: realizing radiology's future.
        Radiology. 2003; 227: 633-638
        • Jha S.
        The allure of quantification.
        Magn Reson Imaging. 2013; 31: 1035-1036
        • Mackenzie R.
        • Dixon A.K.
        Measuring the effects of imaging: an evaluative framework.
        Clin Radiol. 1995; 50: 513-518
        • Abramson R.G.
        • Su P.F.
        • Shyr Y.
        Quantitative metrics in clinical radiology reporting: a snapshot perspective from a single mixed academic-community practice.
        Magn Reson Imaging. 2012; 30: 1357-1366
        • Garcia-Lorenzo D.
        • Francis S.
        • Narayanan S.
        • et al.
        Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging.
        Med Image Anal. 2013; 17: 1-18
        • Pomar-Nadal A.
        • Perez-Castillo C.
        • Alberich-Bayarri A.
        • et al.
        Integrating information about imaging biomarkers into structured radiology reports.
        Radiologia. 2013; 55: 188-194
        • Travis A.R.
        • Sevenster M.
        • Ganesh R.
        • et al.
        Preferences for structured reporting of measurement data: an institutional survey of medical oncologists, oncology registrars, and radiologists.
        Acad Radiol. 2014; 21: 785-796
        • Abajian A.C.
        • Levy M.
        • Rubin D.L.
        Informatics in radiology: improving clinical work flow through an AIM database: a sample web-based lesion tracking application.
        Radiographics. 2012; 32: 1543-1552
        • Bresnahan B.W.
        Economic evaluation in radiology: reviewing the literature and examples in oncology.
        Acad Radiol. 2010; 17: 1090-1095
        • Rubin D.L.
        • Willrett D.
        • O'Connor M.J.
        • et al.
        Automated tracking of quantitative assessments of tumor burden in clinical trials.
        Transl Oncol. 2014; 7: 23-35
        • Enzmann D.R.
        Radiology's value chain.
        Radiology. 2012; 263: 243-252
        • Institute of Medicine
        Developing biomarker-based tools for cancer screening, diagnosis and treatment: workshop summary.
        National Academies Press, Washington, DC2007
        • Clarke L.P.
        • Nordstrom R.J.
        • Zhang H.
        • et al.
        The Quantitative Imaging Network: NCI's historical perspective and planned goals.
        Transl Oncol. 2014; 7: 1-4
      1. Radiological Society of North America. QIBA protocols and profiles. Available at: https://www.rsna.org/QIBA_Protocols_and_Profiles.aspx. Accessed May 20, 2014.

      2. Chan E, Arlinghaus LR, Cardin DB, et al. Phase I trial of chemoradiation with capecitabine and vorinostat in pancreatic cancer (scientific abstract). Gastrointestinal cancers symposium, San Francisco, CA, 2013.

      3. Stadler WM. Clinical needs/values of imaging biomarkers (oral presentation). Chicago, IL: Radiological Society of North America (RSNA), 2010.

        • Doot R.K.
        • Thompson T.
        • Greer B.E.
        • et al.
        Early experiences in establishing a regional quantitative imaging network for PET/CT clinical trials.
        Magn Reson Imaging. 2012; 30: 1291-1300
        • Krishnaraj A.
        • Weinreb J.C.
        • Ellenbogen P.H.
        • et al.
        The Future of imaging biomarkers in radiologic practice: Proceedings of the thirteenth annual ACR forum.
        J Am Coll Radiol. 2014; 11: 20-23