Advertisement

3 Tesla 23Na Magnetic Resonance Imaging During Acute Kidney Injury

      Rationale and Objectives

      Sodium and proton magnetic resonance imaging (23Na/1H-MRI) have shown that muscle and skin can store Na+ without water. In chronic renal failure and in heart failure, Na+ mobilization occurs, but is variable depending on age, dialysis vintage, and other features. Na+ storage depots have not been studied in patients with acute kidney injury (AKI).

      Materials and Methods

      We studied 7 patients with AKI (mean age: 51.7 years; range: 25–84) and 14 age-matched and gender-matched healthy controls. All underwent 23Na/1H-MRI at the calf. Patients were studied before and after acute hemodialysis therapy within 5–6 days. The 23Na-MRI produced grayscale images containing Na+ phantoms, which served to quantify Na+ contents. A fat-suppressed inversion recovery sequence was used to quantify H2O content.

      Results

      Plasma Na+ levels did not change. Mean Na+ contents in muscle and skin did not significantly change following four to five cycles of hemodialysis treatment (before therapy: 32.7 ± 6.9 and 44.2 ± 13.5 mmol/L, respectively; after dialysis: 31.7 ± 10.2 and 42.8 ± 11.8 mmol/L, respectively; P > .05). Water content measurements did not differ significantly before and after hemodialysis in muscle and skin (P > .05). Na+ contents in calf muscle and skin of patients before hemodialysis were significantly higher than in healthy subjects (16.6 ± 2.1 and 17.9 ± 3.2) and remained significantly elevated after hemodialysis.

      Conclusions

      Na+ in muscle and skin accumulates in patients with AKI and, in contrast to patients receiving chronic hemodialysis and those with acute heart failure, is not mobilized with hemodialysis within 5–6 days.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kotchen T.A.
        • Cowley Jr, A.W.
        • Frohlich E.D.
        Salt in health and disease—a delicate balance.
        N Engl J Med. 2013; 368: 2531-2532
        • Titze J.
        • Bauer K.
        • Schafflhuber M.
        • et al.
        Internal sodium balance in DOCA-salt rats: a body composition study.
        Am J Physiol Renal Physiol. 2005; 289: F793-F802
        • Titze J.
        • Lang R.
        • Ilies C.
        • et al.
        Osmotically inactive skin Na+ storage in rats.
        Am J Physiol Renal Physiol. 2003; 285: F1108-F1117
        • Ziomber A.
        • Machnik A.
        • Dahlmann A.
        • et al.
        Sodium-, potassium-, chloride-, and bicarbonate-related effects on blood pressure and electrolyte homeostasis in deoxycorticosterone acetate-treated rats.
        Am J Physiol Renal Physiol. 2008; 295: F1752-F1763
        • Machnik A.
        • Dahlmann A.
        • Kopp C.
        • et al.
        Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats.
        Hypertension. 2010; 55: 755-761
        • Machnik A.
        • Neuhofer W.
        • Jantsch J.
        • et al.
        Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism.
        Nat Med. 2009; 15: 545-552
        • Wiig H.
        • Schroder A.
        • Neuhofer W.
        • et al.
        Immune cells control skin lymphatic electrolyte homeostasis and blood pressure.
        J Clin Invest. 2013; 123: 2803-2815
        • Kopp C.
        • Linz P.
        • Dahlmann A.
        • et al.
        23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients.
        Hypertension. 2013; 61: 635-640
        • Kopp C.
        • Linz P.
        • Wachsmuth L.
        • et al.
        (23)Na magnetic resonance imaging of tissue sodium.
        Hypertension. 2012; 59: 167-172
        • Kopp C.
        • Linz P.
        • Hammon M.
        • et al.
        Seeing the sodium in a patient with hypernatremia.
        Kidney Int. 2012; 82: 1343-1344
        • Dahlmann A.
        • Dorfelt K.
        • Eicher F.
        • et al.
        Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients.
        Kidney Int. 2015; 87: 434-441
        • Levin N.W.
        • Kotanko P.
        • Eckardt K.U.
        • et al.
        Blood pressure in chronic kidney disease stage 5D-report from a Kidney Disease: Improving Global Outcomes controversies conference.
        Kidney Int. 2010; 77: 273-284
        • Agarwal R.
        • Alborzi P.
        • Satyan S.
        • et al.
        Dry-weight reduction in hypertensive hemodialysis patients (DRIP): a randomized, controlled trial.
        Hypertension. 2009; 53: 500-507
        • Al-Hilali N.
        • Al-Humoud H.
        • Ninan V.T.
        • et al.
        Blood pressure control in haemodialysis patients: an audit.
        Nephrology (Carlton). 2006; 11: 100-104
        • Chazot C.
        Can chronic volume overload be recognized and prevented in hemodialysis patients? Use of a restricted-salt diet.
        Semin Dial. 2009; 22: 482-486
        • Davenport A.
        Audit of the effect of dialysate sodium concentration on inter-dialytic weight gains and blood pressure control in chronic haemodialysis patients.
        Nephron Clin Pract. 2006; 104: c120-c125
        • Hur E.
        • Usta M.
        • Toz H.
        • et al.
        Effect of fluid management guided by bioimpedance spectroscopy on cardiovascular parameters in hemodialysis patients: a randomized controlled trial.
        Am J Kidney Dis. 2013; 61: 957-965
        • Kayikcioglu M.
        • Tumuklu M.
        • Ozkahya M.
        • et al.
        The benefit of salt restriction in the treatment of end-stage renal disease by haemodialysis.
        Nephrol Dial Transplant. 2009; 24: 956-962
        • Krautzig S.
        • Janssen U.
        • Koch K.M.
        • et al.
        Dietary salt restriction and reduction of dialysate sodium to control hypertension in maintenance haemodialysis patients.
        Nephrol Dial Transplant. 1998; 13: 552-553
        • Frohlich E.D.
        • Susic D.
        Sodium and its multiorgan targets.
        Circulation. 2011; 124: 1882-1885
        • Titze J.
        • Shakibaei M.
        • Schafflhuber M.
        • et al.
        Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin.
        Am J Physiol Heart Circ Physiol. 2004; 287: H203-H208
        • Rakova N.
        • Juttner K.
        • Dahlmann A.
        • et al.
        Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance.
        Cell Metab. 2013; 17: 125-131
        • Bottomley P.A.
        Sodium MRI in human heart: a review.
        NMR Biomed. 2016; 29: 187-196
        • Madelin G.
        • Lee J.S.
        • Regatte R.R.
        • et al.
        Sodium MRI: methods and applications.
        Prog Nucl Magn Reson Spectrosc. 2014; 79: 14-47
        • Maudsley A.A.
        • Hilal S.K.
        Biological aspects of sodium-23 imaging.
        Br Med Bull. 1984; 40: 165-166
        • Rochitte C.E.
        • Kim R.J.
        • Hillenbrand H.B.
        • et al.
        Microvascular integrity and the time course of myocardial sodium accumulation after acute infarction.
        Circ Res. 2000; 87: 648-655
        • Zaaraoui W.
        • Konstandin S.
        • Audoin B.
        • et al.
        Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study.
        Radiology. 2012; 264: 859-867
        • Ouwerkerk R.
        • Jacobs M.A.
        • Macura K.J.
        • et al.
        Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive 23Na MRI.
        Breast Cancer Res Treat. 2007; 106: 151-160
        • Madelin G.
        • Babb J.
        • Xia D.
        • et al.
        Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis.
        Radiology. 2013; 268: 481-491
        • Bansal N.
        • Szczepaniak L.
        • Ternullo D.
        • et al.
        Effect of exercise on (23)Na MRI and relaxation characteristics of the human calf muscle.
        J Magn Reson Imaging. 2000; 11: 532-538
        • Chang G.
        • Wang L.
        • Schweitzer M.E.
        • et al.
        3D 23Na MRI of human skeletal muscle at 7 Tesla: initial experience.
        Eur Radiol. 2010; 20: 2039-2046
        • Constantinides C.D.
        • Gillen J.S.
        • Boada F.E.
        • et al.
        Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease.
        Radiology. 2000; 216: 559-568
        • Nagel A.M.
        • Amarteifio E.
        • Lehmann-Horn F.
        • et al.
        3 Tesla sodium inversion recovery magnetic resonance imaging allows for improved visualization of intracellular sodium content changes in muscular channelopathies.
        Invest Radiol. 2011; 46: 759-766
        • Weber M.A.
        • Nielles-Vallespin S.
        • Essig M.
        • et al.
        Muscle Na+ channelopathies: MRI detects intracellular 23Na accumulation during episodic weakness.
        Neurology. 2006; 67: 1151-1158
        • Weber M.A.
        • Nielles-Vallespin S.
        • Huttner H.B.
        • et al.
        Evaluation of patients with paramyotonia at 23Na MR imaging during cold-induced weakness.
        Radiology. 2006; 240: 489-500
        • Kopp C.
        • Beyer C.
        • Linz P.
        • et al.
        Na+ deposition in the fibrotic skin of systemic sclerosis patients detected by 23Na-magnetic resonance imaging.
        Rheumatology (Oxford). 2016; (kew371 [pii])https://doi.org/10.1093/rheumatology/kew371
        • Helle F.
        • Karlsen T.V.
        • Tenstad O.
        • et al.
        High-salt diet increases hormonal sensitivity in skin pre-capillary resistance vessels.
        Acta Physiol (Oxf). 2013; 207: 577-581
        • Kleinewietfeld M.
        • Manzel A.
        • Titze J.
        • et al.
        Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells.
        Nature. 2013; 496: 518-522
        • Schafflhuber M.
        • Volpi N.
        • Dahlmann A.
        • et al.
        Mobilization of osmotically inactive Na+ by growth and by dietary salt restriction in rats.
        Am J Physiol Renal Physiol. 2007; 292: F1490-F1500
        • Bergstrom W.H.
        The participation of bone in total body sodium metabolism in the rat.
        J Clin Invest. 1955; 34: 997-1004
        • Edelman I.S.
        • Leibman J.
        Anatomy of body water and electrolytes.
        Am J Med. 1959; 27: 256-277
        • Farber S.J.
        Mucopolysaccharides and sodium metabolism.
        Circulation. 1960; 21: 941-947
        • Farber S.J.
        • Schubert M.
        • Schuster N.
        The binding of cations by chondroitin sulfate.
        J Clin Invest. 1957; 36: 1715-1722
        • Edelman I.S.
        • Leibman J.
        • O'Meara M.P.
        • et al.
        Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water.
        J Clin Invest. 1958; 37: 1236-1256
        • Hammon M.
        • Grossmann S.
        • Linz P.
        • et al.
        23Na magnetic resonance imaging of the lower leg of acute heart failure patients during diuretic treatment.
        PLoS ONE. 2015; 10: e0141336
        • Schneider M.P.
        • Raff U.
        • Kopp C.
        • et al.
        Skin sodium concentration correlates with left ventricular hypertrophy in CKD.
        J Am Soc Nephrol. 2017; (ASN.2016060662 [pii])https://doi.org/10.1681/ASN.2016060662
        • Jantsch J.
        • Schatz V.
        • Friedrich D.
        • et al.
        Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense.
        Cell Metab. 2015; 21: 493-501
        • Nagel A.M.
        • Laun F.B.
        • Weber M.A.
        • et al.
        Sodium MRI using a density-adapted 3D radial acquisition technique.
        Magn Reson Med. 2009; 62: 1565-1573