Advertisement

Differentiation Between Luminal-A and Luminal-B Breast Cancer Using Intravoxel Incoherent Motion and Dynamic Contrast-Enhanced Magnetic Resonance Imaging

Published:August 01, 2017DOI:https://doi.org/10.1016/j.acra.2017.06.016

      Rationale and Objectives

      The study aimed to investigate whether intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) can differentiate luminal-B from luminal-A breast cancer

      Materials and Methods

      Biexponential analyses of IVIM and DCE MRI were performed using a 3.0-T MRI scanner, involving 134 patients with 137 pathologically confirmed luminal-type invasive breast cancers. Luminal-type breast cancer was categorized as luminal-B breast cancer (LBBC, Ki-67 ≧ 14%) or luminal-A breast cancer (LABC, Ki-67 < 14%). Quantitative parameters from IVIM (pure diffusion coefficient [D], perfusion-related diffusion coefficient [D*], and fraction [f]) and DCE MRI (initial percentage of enhancement and signal enhancement ratio [SER]) were calculated. The apparent diffusion coefficient (ADC) was also calculated using monoexponential fitting. We correlated these data with the Ki-67 status.

      Results

      The D and ADC values of LBBC were significantly lower than those of LABC (P = 0.028, P = 0.037). The SER of LBBC was significantly higher than that of LABC (P = 0.004). A univariate analysis showed that a significantly lower D (<0.847 x 10−3 mm2/s), lower ADC (<0.960 × 10−3 mm2/s), and higher SER (>1.071) values were associated with LBBC (all P values <0.01), compared to LABC. In a multivariate analysis, a higher SER (>1.071; odds ratio: 3.0099, 95% confidence interval: 1.4246–6.3593; P = 0.003) value and a lower D (<0.847 × 10−3 mm2/s; odds ratio: 2.6878, 95% confidence interval: 1.0445–6.9162; P = 0.040) value were significantly associated with LBBC, compared to LABC.

      Conclusion

      The SER derived from DCE MRI and the D derived from IVIM are associated independently with the Ki-67 status in patients with luminal-type breast cancer.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sorlie T.
        • Perou C.M.
        • Tibshirani R.
        • et al.
        Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.
        Proc Natl Acad Sci USA. 2001; 98: 10869-10874
        • Van de Vijver M.J.
        • He Y.D.
        • van't Veer L.J.
        • et al.
        A gene expression signature as a predictor of survival in breast cancer.
        N Engl J Med. 2002; 347: 1999-2009
        • Desmedt C.
        • Haibe-Kains B.
        • Wirapati P.
        • et al.
        Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes.
        Clin Cancer Res. 2008; 14: 5158-5165
        • Rouzier R.
        • Perou C.M.
        • Symmans W.F.
        • et al.
        Breast cancer molecular subtypes respond differently to preoperative chemotherapy.
        Clin Cancer Res. 2005; 11: 5678-5685
        • Montagna E.
        • Bagnardi V.
        • Rotmensz N.
        • et al.
        Immunohistochemically defined subtypes and outcome in occult breast carcinoma with axillary presentation.
        Breast Cancer Res Treat. 2011; 129: 867-875
        • Cheang M.C.
        • Chia S.K.
        • Voduc D.
        • et al.
        Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer.
        J Natl Cancer Inst. 2009; 101: 736-750
        • Sanchez-Munoz A.
        • Garcia-Tapiador A.M.
        • Martinez-Ortega E.
        • et al.
        Tumour molecular subtyping according to hormone receptors and HER2 status defines different pathological complete response to neoadjuvant chemotherapy in patients with locally advanced breast cancer.
        Clin Transl Oncol. 2008; 10: 646-653
        • Goldhirsch A.
        • Wood W.C.
        • Coates A.S.
        • et al.
        Strategies for subtypes: dealing with the diversity of breast cancer—highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer.
        Ann Oncol. 2011; 22: 1736-1747
        • Goldhirsch A.
        • Winer E.P.
        • Coates A.S.
        • et al.
        Personalizing the treatment of woman with early breast cancer—highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer.
        Ann Oncol. 2013; 24: 2206-2223
        • Kontzoglou K.
        • Palla V.
        • Karaolanis G.
        • et al.
        Correlation between Ki67 and breast cancer prognosis.
        Oncology. 2013; 84: 219-225
        • Colleoni M.
        • Viale G.
        • Zahrieh D.
        • et al.
        Expression of ER, PgR, HER1, HER2, and response: a study of preoperative chemotherapy.
        Ann Oncol. 2008; 19: 465-472
        • Yerushalmi R.
        • Woods R.
        • Ravdin P.M.
        • et al.
        Ki67 in breast cancer: prognostic and predictive potential.
        Lancet Oncol. 2010; 11: 174-183
        • Dowsett M.
        • Nielsen T.O.
        • A'Hern R.
        • et al.
        Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group.
        J Natl Cancer Inst. 2011; 103: 1656-1664
        • Guo Y.
        • Cai Y.Q.
        • Cai Z.L.
        • et al.
        Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging.
        J Magn Reson Imaging. 2002; 16: 172-178
        • Kim S.H.
        • Cha E.S.
        • Kim H.S.
        • et al.
        Diffusion-weighted imaging of breast cancer: correlation of the apparent diffusion coefficient value with prognostic factors.
        J Magn Reson Imaging. 2009; 30: 615-620
        • Martincich L.
        • Deantoni V.
        • Bertotto I.
        • et al.
        Correlations between diffusion-weighted imaging and breast cancer biomarkers.
        Eur Radiol. 2012; 22: 1519-1528
        • Youk J.H.
        • Son E.J.
        • Chung J.
        • et al.
        Triple-negative breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging: comparison with other breast cancer subtypes.
        Eur Radiol. 2012; 22: 1724-1734
        • Park S.H.
        • Choi H.Y.
        • Hahn S.Y.
        Correlations between apparent diffusion coefficient values of invasive ductal carcinoma and pathologic factors on diffusion-weighted MRI at 3.0 tesla.
        J Magn Reson Imaging. 2015; 41: 175-182
        • Mori N.
        • Ota H.
        • Mugikura S.
        • et al.
        Luminal-type breast cancer: correlation of apparent diffusion coefficients with the Ki-67 labeling index.
        Radiology. 2014; 274: 66-73
        • Le Bihan D.
        • Breton E.
        • Lallemand D.
        • et al.
        MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.
        Radiology. 1986; 161: 401-407
        • Tamura T.
        • Usui S.
        • Murakami S.
        • et al.
        Biexponential signal attenuation analysis of diffusion-weighted imaging of breast.
        Magn Reson Med Sci. 2010; 9: 195-207
        • Sigmund E.E.
        • Cho G.Y.
        • Kim S.
        • et al.
        Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer.
        Magn Reson Med. 2011; 65: 1437-1447
        • Liu C.
        • Liang C.
        • Liu Z.
        • et al.
        Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI.
        Eur J Radiol. 2013; 82: e782-e789
        • Bokacheva L.
        • Kaplan J.B.
        • Giri D.D.
        • et al.
        Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma.
        J Magn Reson Imaging. 2014; 40: 813-823
        • Liu C.
        • Wang K.
        • Chan Q.
        • et al.
        Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging.
        Eur Radiol. 2016; 26: 3888-3898https://doi.org/10.1007/s00330-016-4241-6
        • Ma D.
        • Lu F.
        • Zou X.
        • et al.
        Intravoxel incoherent motion diffusion-weighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions.
        Magn Reson Imaging. 2017; 36: 175-179
        • Lee Y.J.
        • Kim S.H.
        • Kang B.J.
        • et al.
        Intravoxel incoherent motion (IVIM)-derived parameters in diffusion-weighted MRI: associations with prognostic factors in invasive ductal carcinoma.
        J Magn Reson Imaging. 2017; 45: 1394-1406
        • Kim Y.
        • Ko K.
        • Kim D.
        • et al.
        Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer: association with histopathological features and subtypes.
        Br J Radiol. 2016; 89: 20160140https://doi.org/10.1259/bjr.20160140
        • Cho G.Y.
        • Moy L.
        • Kim S.G.
        • et al.
        Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors.
        Eur Radiol. 2016; 26: 2547-2558
        • Patel J.
        • Sigmund E.E.
        • Rusinek H.
        • et al.
        Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience.
        J Magn Reson Imaging. 2010; 31: 589-600
        • Ohno N.
        • Miyati T.
        • Kobayashi S.
        • et al.
        Modified triexponential analysis of intravoxel incoherent motion for brain perfusion and diffusion.
        J Magn Reson Imaging. 2016; 43: 818-823
        • Partridge S.C.
        • Heumann E.J.
        • Hylton N.M.
        Semi-automated analysis for MRI of breast tumors.
        Stud Health Technol Inform. 1999; 62: 259-260
        • Kato F.
        • Kudo K.
        • Yamashita H.
        • et al.
        Differences in morphological features and minimum apparent diffusion coefficient values among breast cancer subtypes using 3-tesla MRI.
        Eur J Radiol. 2016; 85: 96-102
        • Shin J.K.
        • Kim J.Y.
        Dynamic contrast-enhanced and diffusion-weighted MRI of estrogen receptor-positive invasive breast cancers: associations between quantitative MR parameters and Ki-67 proliferation status.
        J Magn Reson Imaging. 2016; 45: 94-102https://doi.org/10.1002/jmri.25348
        • Stomper P.C.
        • Herman S.
        • Klippenstein D.L.
        • et al.
        Suspect breast lesions: findings at dynamic gadolinium-enhanced MR imaging correlated with mammographic and pathologic features.
        Radiology. 1995; 197: 387-395
        • Fischer U.
        • Kopka L.
        • Brinck U.
        • et al.
        Prognostic value of contrast-enhanced MR mammography in patients with breast cancer.
        Eur Radiol. 1997; 7: 1002-1005
        • Lee S.
        • Cho N.
        • Kim S.
        • et al.
        Correlation between high resolution dynamic MR features and prognostic factors in breast cancer.
        Korean J Radiol. 2008; 9: 10-18
        • Koo H.R.
        • Cho N.
        • Song I.C.
        • et al.
        Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers.
        J Magn Reson Imaging. 2012; 36: 145-151
        • Kim J.Y.
        • Kim S.H.
        • Kim Y.J.
        • et al.
        Enhancement parameters on dynamic contrast enhanced breast MRI: do they correlate with prognostic factors and subtypes of breast cancers?.
        Magn Reson Imaging. 2015; 33: 72-80
        • Lee H.S.
        • Kim S.H.
        • Kang B.J.
        • et al.
        Perfusion parameters in dynamic contrast-enhanced MRI and apparent diffusion coefficient value in diffusion-weighted: association with prognostic factors in breast cancer.
        Acad Radiol. 2016; 23: 446-456