Advertisement

Logistics of Three-dimensional Printing

Primer for Radiologists
Published:October 10, 2017DOI:https://doi.org/10.1016/j.acra.2017.08.003
      The Association of University Radiologists Radiology Research Alliance Task Force on three-dimensional (3D) printing presents a review of the logistic considerations for establishing a clinical service using this new technology, specifically focused on implications for radiology. Specific topics include printer selection for 3D printing, software selection, creating a 3D model for printing, providing a 3D printing service, research directions, and opportunities for radiologists to be involved in 3D printing. A thorough understanding of the technology and its capabilities is necessary as the field of 3D printing continues to grow. Radiologists are in the unique position to guide this emerging technology and its use in the clinical arena.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mitsouras D.
        • Liacouras P.
        • Imanzadeh A.
        • et al.
        Medical 3D printing for the radiologist.
        Radiographics. 2015; 35 (PubMed PMID; :) (Epub 2015/11/13; PMCID: PMC4671424): 1965-1988https://doi.org/10.1148/rg.2015140320
        26562233
        • Marro A.
        • Bandukwala T.
        • Mak W.
        Three-dimensional printing and medical imaging: a review of the methods and applications.
        Curr Probl Diagn Radiol. 2016; 45 (PubMed PMID; :) (Epub 2015/08/25): 2-9https://doi.org/10.1067/j.cpradiol.2015.07.009
        26298798
        • Mishra S.
        Application of 3D printing in medicine.
        Indian Heart J. 2016; 68 (PubMed PMID; :) (Epub 2016/02/21; PMCID: PMC4759482): 108-109https://doi.org/10.1016/j.ihj.2016.01.009
        26896278
        • Rybicki F.J.
        • Otero H.J.
        • Steigner M.L.
        • et al.
        Initial evaluation of coronary images from 320-detector row computed tomography.
        Int J Cardiovasc Imaging. 2008; 24 (PubMed PMID; :) (Epub 2008/03/28): 535-546https://doi.org/10.1007/s10554-008-9308-2
        18368512
        • Christensen A.
        • Rybicki F.J.
        Maintaining safety and efficacy for 3D printing in medicine.
        3D Print Med. 2017; 3: 1https://doi.org/10.1186/s41205-016-0009-5
        • Prima M.
        Additively manufactured medical products—the FDA perspective.
        3D Print Med. 2015; 2https://doi.org/10.1186/s41205-016-0005-9
        • Kim G.B.
        • Lee S.
        • Kim H.
        • et al.
        Three-dimensional printing: basic principles and applications in medicine and radiology.
        Korean J Radiol. 2016; 17 (PubMed PMID; :) (Epub 2016/03/10; PMCID: PMC4781757): 182-197https://doi.org/10.3348/kjr.2016.17.2.182
        26957903
        • Friedman T.
        • Michalski M.
        • Goodman T.R.
        • et al.
        3D printing from diagnostic images: a radiologist's primer with an emphasis on musculoskeletal imaging—putting the 3D printing of pathology into the hands of every physician.
        Skeletal Radiol. 2016; 45 (PubMed PMID; :) (Epub 2015/11/26): 307-321https://doi.org/10.1007/s00256-015-2282-6
        26592802
        • Matsumoto J.S.
        • Morris J.M.
        • Foley T.A.
        • et al.
        Three-dimensional physical modeling: applications and experience at Mayo Clinic.
        Radiographics. 2015; 35 (PubMed PMID; :) (Epub 2015/11/13): 1989-2006https://doi.org/10.1148/rg.2015140260
        26562234
        • Anastasiou A.
        • Tsirmpas C.
        • Rompas A.
        • et al.
        3D printing: basic concepts mathematics and technologies.
        (13th IEEE International Conference on BioInformatics and BioEngineering; 2013 10–13 Nov)2013
        • Wojtyla S.
        • Klama P.
        • Baran T.
        Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon.
        J Occup Environ Hyg. 2017; 14 (PubMed PMID; :) (Epub 2017/02/07): D80-D85https://doi.org/10.1080/15459624.2017.1285489
        28165927
        • Kakizawa H.
        • Toyota N.
        • Akiyama Y.
        • et al.
        A three-dimensional laminated paper model of the scaphoid from computed tomography.
        Acta Radiol (Stockholm, Sweden: 1987). 2007; 48 (PubMed PMID; :) (Epub 2007/02/28): 80-88https://doi.org/10.1080/02841850601026419
        17325931
        • Leng S.
        • McGee K.
        • Morris J.
        • et al.
        Anatomic modeling using 3D printing: quality assurance and optimization.
        3D Print Med. 2017; 3: 6https://doi.org/10.1186/s41205-017-0014-3
        • Bortolotto C.
        • Eshja E.
        • Peroni C.
        • et al.
        3D printing of CT dataset: validation of an open source and consumer-available workflow.
        J Digit Imaging. 2016; 29 (PubMed PMID; :) (Epub 2015/07/16; PMCID: PMC4722024): 14-21https://doi.org/10.1007/s10278-015-9810-8
        26175139
        • Ford J.M.
        • Decker S.J.
        Computed tomography slice thickness and its effects on three-dimensional reconstruction of anatomical structures.
        J Forensic Radiol Imaging. 2016; 4: 43-46https://doi.org/10.1016/j.jofri.2015.10.004
        • Marcus R.P.
        • Morris J.M.
        • Matsumoto J.M.
        • et al.
        Implementation of iterative metal artifact reduction in the pre-planning-procedure of three-dimensional physical modeling.
        3D Print Med. 2017; 3: 5https://doi.org/10.1186/s41205-017-0013-4
        • Poornima B.
        • Sumathi A.
        Image registration techniques for satellite and medical images: a survey.
        Int J Sci Eng Res. 2013; 4: 2090-2101
        • Oberg E.J.
        • Franklin D.
        • Horton H.L.
        • et al.
        Machinery's handbook.
        25th ed. Industrial Press, New York, NY, USA1996
        • AlAli A.B.
        • Griffin M.F.
        • Butler P.E.
        Three-dimensional printing surgical applications.
        Eplasty. 2015; 15 (PubMed PMID; :) (Epub 2015/08/25; PMCID: PMC4539849): e37
        26301002
        • Preece D.
        • Williams S.B.
        • Lam R.
        • et al.
        Let's get physical”: advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.
        Anat Sci Educ. 2013; 6 (PubMed PMID; :) (Epub 2013/01/26): 216-224https://doi.org/10.1002/ase.1345
        23349117
        • Brown G.A.
        • Firoozbakhsh K.
        • DeCoster T.A.
        • et al.
        Rapid prototyping: the future of trauma surgery?.
        J Bone Joint Surg Am. 2003; 85 (PubMed PMID; :) (Epub 2003/12/04): 49-55
        14652393
        • Esses S.J.
        • Berman P.
        • Bloom A.I.
        • et al.
        Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping.
        AJR Am J Roentgenol. 2011; 196 (PubMed PMID; :) (Epub 2011/05/25): W683-W688https://doi.org/10.2214/ajr.10.5681
        21606254
        • Frame M.
        • Huntley J.S.
        Rapid prototyping in orthopaedic surgery: a user's guide.
        ScientificWorldJournal. 2012; 2012 (PubMed PMID; :) (Epub 2012/06/06; PMCID: PMC3361341): 838575https://doi.org/10.1100/2012/838575
        22666160
        • Malik H.H.
        • Darwood A.R.
        • Shaunak S.
        • et al.
        Three-dimensional printing in surgery: a review of current surgical applications.
        J Surg Res. 2015; 199 (PubMed PMID; :) (Epub 2015/08/10): 512-522https://doi.org/10.1016/j.jss.2015.06.051
        26255224
        • Martelli N.
        • Serrano C.
        • van den Brink H.
        • et al.
        Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review.
        Surgery. 2016; 159 (PubMed PMID; :) (Epub 2016/02/03): 1485-1500https://doi.org/10.1016/j.surg.2015.12.017
        26832986
        • Murray D.J.
        • Edwards G.
        • Mainprize J.G.
        • et al.
        Advanced technology in the management of fibrous dysplasia.
        J Plast Reconstr Aesthet Surg. 2008; 61 (PubMed PMID; :) (Epub 2008/03/15): 906-916https://doi.org/10.1016/j.bjps.2007.08.029
        18339597
        • Zheng Y.X.
        • Yu D.F.
        • Zhao J.G.
        • et al.
        3D printout models vs. 3D-rendered images: which is better for preoperative planning?.
        J Surg Educ. 2016; 73 (PubMed PMID; :) (Epub 2016/02/11): 518-523https://doi.org/10.1016/j.jsurg.2016.01.003
        26861582
        • He Y.
        • Xue G.H.
        • Fu J.Z.
        Fabrication of low cost soft tissue prostheses with the desktop 3D printer.
        Sci Rep. 2014; 4 (PubMed PMID; :) (Epub 2014/11/28; PMCID: PMC4245596): 6973https://doi.org/10.1038/srep06973
        25427880
        • Ibrahim A.M.
        • Jose R.R.
        • Rabie A.N.
        • et al.
        Three-dimensional printing in developing countries.
        Plast Reconstr Surg Glob Open. 2015; 3 (PubMed PMID; :) (Epub 2015/08/25; PMCID: PMC4527617): e443https://doi.org/10.1097/gox.0000000000000298
        26301132
        • Naftulin J.S.
        • Kimchi E.Y.
        • Cash S.S.
        Streamlined, inexpensive 3D printing of the brain and skull.
        PLoS ONE. 2015; 10 (PubMed PMID; :) (e0136198; Epub 2015/08/22; PMCID: PMC4546422)https://doi.org/10.1371/journal.pone.0136198
        26295459
        • Cheng Y.L.
        • Chen S.J.
        Manufacturing of cardiac models through rapid prototyping technology for surgery planning.
        Mater Sci Forum. 2006; 505–507 (doi:10.4028/www.scientific.net/MSF.505-507.1063): 1063-1068
        • Zopf D.A.
        • Hollister S.J.
        • Nelson M.E.
        • et al.
        Bioresorbable airway splint created with a three-dimensional printer.
        N Engl J Med. 2013; 368 (PubMed PMID; :) (Epub 2013/05/24): 2043-2045https://doi.org/10.1056/NEJMc1206319
        23697530
        • US Food and Drug Administration
        CDRH May 10, 2016, Document no. 1400002. Technical considerations for additive manufactured devices.
        (Draft Guidance for Industry and Food and Drug Administration Staff)2016
        • US Food and Drug Administration
        CDRH fiscal year 2015 (FY 2015) proposed guidance development and focused retrospective review of final guidance.
        2015
        • Morrison R.J.
        • Kashlan K.N.
        • Flanangan C.L.
        • et al.
        Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices.
        Clin Transl Sci. 2015; 8 (PubMed PMID; :) (Epub 2015/08/06; PMCID: PMC4626249): 594-600https://doi.org/10.1111/cts.12315
        26243449
        • Fan H.
        • Fu J.
        • Li X.
        • et al.
        Implantation of customized 3-D printed titanium prosthesis in limb salvage surgery: a case series and review of the literature.
        World J Surg Oncol. 2015; 13 (PubMed PMID; :) (Epub 2015/11/06; PMCID: PMC4632365): 308https://doi.org/10.1186/s12957-015-0723-2
        26537339
        • Hong S.B.
        • Eliaz N.
        • Leisk G.G.
        • et al.
        A new Ti-5Ag alloy for customized prostheses by three-dimensional printing (3DP).
        J Dent Res. 2001; 80 (PubMed PMID; :) (Epub 2001/05/31): 860-863https://doi.org/10.1177/00220345010800030301
        11379885
        • Ng C.S.
        Recent and future developments in chest wall reconstruction.
        Semin Thorac Cardiovasc Surg. 2015; 27 (PubMed PMID; :) (Epub 2015/12/22): 234-239https://doi.org/10.1053/j.semtcvs.2015.05.002
        26686454
        • Banks J.
        Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization.
        IEEE Pulse. 2013; 4 (PubMed PMID; :) (Epub 2013/11/16): 22-26https://doi.org/10.1109/mpul.2013.2279617
        24233187
        • Chia H.N.
        • Wu B.M.
        Recent advances in 3D printing of biomaterials.
        J Biol Engrg. 2015; 9 (PubMed PMID; :) (Epub 2015/04/14; PMCID: PMC4392469): 4https://doi.org/10.1186/s13036-015-0001-4
        25866560
        • Rankin T.M.
        • Giovinco N.A.
        • Cucher D.J.
        • et al.
        Three-dimensional printing surgical instruments: are we there yet?.
        J Surg Res. 2014; 189 (PubMed PMID; :) (Epub 2014/04/12; PMCID: PMC4460996): 193-197https://doi.org/10.1016/j.jss.2014.02.020
        24721602
        • Arora A.
        • Datarkar A.N.
        • Borle R.M.
        • et al.
        Custom-made implant for maxillofacial defects using rapid prototype models.
        J Oral Maxillofac Surg. 2013; 71 (PubMed PMID; :) (Epub 2013/01/29): e104-e110https://doi.org/10.1016/j.joms.2012.10.015
        23351764
        • Grant G.T.
        • Taft R.M.
        • Wheeler S.T.
        Practical application of polyurethane and Velcro in maxillofacial prosthetics.
        J Prosthet Dent. 2001; 85 (PubMed PMID; :) (Epub 2001/03/27): 281-283https://doi.org/10.1067/mpr.2001.114089
        11264936
        • Harrysson O.L.
        • Hosni Y.A.
        • Nayfeh J.F.
        Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study.
        BMC Musculoskelet Disord. 2007; 8 (PubMed PMID; :) (Epub 2007/09/15; PMCID: PMC2100040): 91https://doi.org/10.1186/1471-2474-8-91
        17854508
        • Woodfield T.B.
        • Guggenheim M.
        • von Rechenberg B.
        • et al.
        Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints.
        Cell Prolif. 2009; 42 (PubMed PMID; :) (Epub 2009/06/03): 485-497https://doi.org/10.1111/j.1365-2184.2009.00608.x
        19486014
        • Yoo S.-J.
        • Thabit O.
        • Kim E.K.
        • et al.
        3D printing in medicine of congenital heart diseases.
        3D Print Med. 2016; 2: 3https://doi.org/10.1186/s41205-016-0004-x
        • Bizzotto N.
        • Tami I.
        • Santucci A.
        • et al.
        3D printed replica of articular fractures for surgical planning and patient consent: a two years multi-centric experience.
        3D Print Med. 2016; 2: 2https://doi.org/10.1186/s41205-016-0006-8
        • Tabakovic S.Z.
        • Konstantinovic V.S.
        • Radosavljevic R.
        • et al.
        Application of computer-aided designing and rapid prototyping technologies in reconstruction of blowout fractures of the orbital floor.
        J Craniofac Surg. 2015; 26 (PubMed PMID; :) (Epub 2015/07/01): 1558-1563https://doi.org/10.1097/scs.0000000000001883
        26125649
        • Zhou L.B.
        • Shang H.T.
        • He L.S.
        • et al.
        Accurate reconstruction of discontinuous mandible using a reverse engineering/computer-aided design/rapid prototyping technique: a preliminary clinical study.
        J Oral Maxillofac Surg. 2010; 68 (PubMed PMID; :) (Epub 2010/06/15): 2115-2121https://doi.org/10.1016/j.joms.2009.09.033
        20542365
        • Lee J.Y.
        • Choi B.
        • Wu B.
        • et al.
        Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering.
        Biofabrication. 2013; 5 (PubMed PMID; :) (Epub 2013/09/26; PMCID: PMC3852984): 045003https://doi.org/10.1088/1758-5082/5/4/045003
        24060622
        • Makitie A.A.
        • Korpela J.
        • Elomaa L.
        • et al.
        Novel additive manufactured scaffolds for tissue engineered trachea research.
        Acta Otolaryngol. 2013; 133 (PubMed PMID; :) (Epub 2013/02/12): 412-417https://doi.org/10.3109/00016489.2012.761725
        23394221
        • Mannoor M.S.
        • Jiang Z.
        • James T.
        • et al.
        3D printed bionic ears.
        Nano Lett. 2013; 13 (PubMed PMID; :) (Epub 2013/05/03; PMCID: PMC3925752): 2634-2639https://doi.org/10.1021/nl4007744
        23635097
        • Wang X.
        • Yan Y.
        • Zhang R.
        Rapid prototyping as a tool for manufacturing bioartificial livers.
        Trends Biotechnol. 2007; 25 (PubMed PMID; :) (Epub 2007/10/24): 505-513https://doi.org/10.1016/j.tibtech.2007.08.010
        17949840
        • Giannopoulos A.A.
        • Mitsouras D.
        • Yoo S.J.
        • et al.
        Applications of 3D printing in cardiovascular diseases.
        Nat Rev Cardiol. 2016; 13 (PubMed PMID; :) (Epub 2016/11/05): 701-718https://doi.org/10.1038/nrcardio.2016.170
        27786234
        • Ripley B.
        • Kelil T.
        • Cheezum M.K.
        • et al.
        3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement.
        J Cardiovasc Comput Tomogr. 2016; 10 (PubMed PMID; :) (Epub 2016/01/07): 28-36https://doi.org/10.1016/j.jcct.2015.12.004
        26732862
        • Markert M.
        • Weber S.
        • Lueth T.C.
        A beating heart model 3D printed from specific patient data.
        Conf Proc IEEE Eng Med Biol Soc. 2007; 2007 (PubMed PMID; :) (Epub 2007/11/16): 4472-4475https://doi.org/10.1109/iembs.2007.4353332
        18002998
        • Gao B.
        • Yang Q.
        • Zhao X.
        • et al.
        4D Bioprinting for biomedical applications.
        Trends Biotechnol. 2016; 34 (PubMed PMID; :) (Epub 2016/04/09): 746-756https://doi.org/10.1016/j.tibtech.2016.03.004
        27056447
        • Li Y.C.
        • Zhang Y.S.
        • Akpek A.
        • et al.
        4D Bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.
        Biofabrication. 2016; 9 (PubMed PMID; :) (Epub 2016/12/03): 012001https://doi.org/10.1088/1758-5090/9/1/012001
        27910820
        • Kunz M.
        • Ma B.
        • Rudan J.F.
        • et al.
        Image-guided distal radius osteotomy using patient-specific instrument guides.
        J Hand Surg Am. 2013; 38 (PubMed PMID; :) (Epub 2013/07/31): 1618-1624https://doi.org/10.1016/j.jhsa.2013.05.018
        23890500
        • Biglino G.
        • Verschueren P.
        • Zegels R.
        • et al.
        Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing.
        J Cardiovasc Magn Reson. 2013; 15 (PubMed PMID; :) (Epub 2013/01/18.; PMCID: PMC3564729): 2https://doi.org/10.1186/1532-429x-15-2
        23324211
        • Canstein C.
        • Cachot P.
        • Faust A.
        • et al.
        3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries.
        Magn Reson Med. 2008; 59 (PubMed PMID; :) (Epub 2008/02/29): 535-546https://doi.org/10.1002/mrm.21331
        18306406
        • Cao P.
        • Duhamel Y.
        • Olympe G.
        • et al.
        A new production method of elastic silicone carotid phantom based on MRI acquisition using rapid prototyping technique.
        Conf Proc IEEE Eng Med Biol Soc. 2013; 2013 (PubMed PMID; :) (Epub 2013/10/11): 5331-5334https://doi.org/10.1109/embc.2013.6610753
        24110940
        • Ionita C.N.
        • Mokin M.
        • Varble N.
        • et al.
        Challenges and limitations of patient-specific vascular phantom fabrication using 3D polyjet printing.
        Proc SPIE Int Soc Opt Eng. 2014; 9038 (PubMed PMID; :) (Epub 2014/10/11; PMCID: PMC4188370): 90380mhttps://doi.org/10.1117/12.2042266
        25300886
        • Markl M.
        • Schumacher R.
        • Kuffer J.
        • et al.
        Rapid vessel prototyping: vascular modeling using 3t magnetic resonance angiography and rapid prototyping technology.
        Magma (New York, NY). 2005; 18 (PubMed PMID; :) (Epub 2005/12/22): 288-292https://doi.org/10.1007/s10334-005-0019-6
        16369802
        • Steigner M.L.
        • Mitsouras D.
        • Whitmore A.G.
        • et al.
        Iodinated contrast opacification gradients in normal coronary arteries imaged with prospectively ECG-gated single heart beat 320-detector row computed tomography.
        Circ Cardiovasc Imaging. 2010; 3 (PubMed PMID; :) (Epub 2010/01/02; PMCID: PMC3063948): 179-186https://doi.org/10.1161/circimaging.109.854307
        20044512
        • Lindegaard J.C.
        • Madsen M.L.
        • Traberg A.
        • et al.
        Individualised 3D printed vaginal template for MRI guided brachytherapy in locally advanced cervical cancer.
        Radiother Oncol. 2016; 118 (PubMed PMID; :) (Epub 2016/01/09): 173-175https://doi.org/10.1016/j.radonc.2015.12.012
        26743833
        • Mitsouras D.
        • Lee T.C.
        • Liacouras P.
        • et al.
        Three-dimensional printing of MRI-visible phantoms and MR image-guided therapy simulation.
        Magn Reson Med. 2017; 77 (PubMed PMID; :) (Epub 2016/02/13; PMCID: PMC5108690): 613-622https://doi.org/10.1002/mrm.26136
        26864335
        • Morrison R.J.
        • Hollister S.J.
        • Niedner M.F.
        • et al.
        Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients.
        Sci Transl Med. 2015; 7 (PubMed PMID; :) (Epub 2015/05/01; PMCID: PMC4495899): 285ra64https://doi.org/10.1126/scitranslmed.3010825
        25925683
        • Paydarfar J.A.
        • Wu X.
        • Halter R.J.
        MRI- and CT-compatible polymer laryngoscope: a step toward image-guided transoral surgery.
        Otolaryngol Head Neck Surg. 2016; 155 (PubMed PMID; :) (Epub 2016/05/26): 364-366https://doi.org/10.1177/0194599816650176
        27221570
        • Ripley B.
        • Levin D.
        • Kelil T.
        • et al.
        3D printing from MRI data: harnessing strengths and minimizing weaknesses.
        J Magn Reson Imaging. 2017; 45 (PubMed PMID; :) (Epub 2016/11/23): 635-645https://doi.org/10.1002/jmri.25526
        27875009
        • Ebert L.C.
        • Thali M.J.
        • Ross S.
        Getting in touch—3D printing in forensic imaging.
        Forensic Sci Int. 2011; 211 (PubMed PMID; :) (Epub 2011/05/24): e1-e6https://doi.org/10.1016/j.forsciint.2011.04.022
        21602004
        • Schievano S.
        • Sebire N.J.
        • Robertson N.J.
        • et al.
        Reconstruction of fetal and infant anatomy using rapid prototyping of post-mortem MR images.
        Insights Imaging. 2010; 1 (PubMed PMID; :) (Epub 2010/09/01; PMCID: PMC3259363): 281-286https://doi.org/10.1007/s13244-010-0028-5
        22347922
        • Kaisar M.A.
        • Sajja R.K.
        • Prasad S.
        • et al.
        New experimental models of the blood-brain barrier for CNS drug discovery.
        Expert Opin Drug Discov. 2017; 12 (PubMed PMID; :) (Epub 2016/10/27): 89-103https://doi.org/10.1080/17460441.2017.1253676
        27782770
        • D'Urso P.S.
        • Barker T.M.
        • Earwaker W.J.
        • et al.
        Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial.
        J Craniomaxillofac Surg. 1999; 27 (PubMed PMID; :) (Epub 1999/04/03): 30-37
        10188125
        • Muller A.
        • Krishnan K.G.
        • Uhl E.
        • et al.
        The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery.
        J Craniofac Surg. 2003; 14 (PubMed PMID; :) (Epub 2003/11/06): 899-914
        14600634