Clinical Applications of 3D Printing

Primer for Radiologists
Published:October 10, 2017DOI:https://doi.org/10.1016/j.acra.2017.08.004
      Three-dimensional (3D) printing refers to a number of manufacturing technologies that create physical models from digital information. Radiology is poised to advance the application of 3D printing in health care because our specialty has an established history of acquiring and managing the digital information needed to create such models. The 3D Printing Task Force of the Radiology Research Alliance presents a review of the clinical applications of this burgeoning technology, with a focus on the opportunities for radiology. Topics include uses for treatment planning, medical education, and procedural simulation, as well as patient education. Challenges for creating custom implantable devices including financial and regulatory processes for clinical application are reviewed. Precedent procedures that may translate to this new technology are discussed. The task force identifies research opportunities needed to document the value of 3D printing as it relates to patient care.

      Key Words

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sniderman D.
        American Society Of Mechanical Engineers 3D printing takes off.
        (American Society Of Mechanical Engineers website; Available at:)
        http://bit.ly/2vAauKy
        Date: 2012
        Date accessed: August 30, 2017
        • Hull C.W.
        Apparatus for production of three-dimensional objects by stereolithography.
        (Uvp, Inc., inventor; Uvp, Inc., assignee; United States patent US 4,575,330; Available at:)
        http://www.google.com/patents/us4575330
        Date: 1986
        Date accessed: August 30, 2017
        • Sachs E.
        • Cima M.
        • Cornie J.
        Three-dimensional printing: rapid tooling and prototypes directly from a CAD model.
        CIRP Annals—Manuf Tech. 1990; 39: 201-204https://doi.org/10.1016/S0007-8506(07)61035-X
        • Sachs E.M.
        • Haggerty J.S.
        • Cima M.J.
        • et al.
        Three-dimensional printing techniques.
        (United States patent US 5,204,055; Available at:)
        http://www.google.com/patents/US5204055
        Date: 1993
        Date accessed: August 30, 2017
        • Gross B.C.
        • Erkal J.L.
        • Lockwood S.Y.
        • et al.
        Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences.
        Anal Chem. 2014; 86: 3240-3253https://doi.org/10.1021/ac403397r
        • Curodeau A.
        • Sachs E.
        • Caldarise S.
        Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell.
        J Biomed Mater Res. 2000; 53: 525-535
        • Hong S.B.
        • Eliaz N.
        • Leisk G.G.
        • et al.
        A new Ti-5Ag alloy for customized prostheses by three-dimensional printing (3DP).
        J Dent Res. 2001; 80: 860-863
        • Melican M.C.
        • Zimmerman M.C.
        • Dhillon M.S.
        • et al.
        Three-dimensional printing and porous metallic surfaces: a new orthopedic application.
        J Biomed Mater Res. 2001; 55: 194-202
        • Rowe C.W.
        • Katstra W.E.
        • Palazzolo R.D.
        • et al.
        Multimechanism oral dosage forms fabricated by three dimensional printing.
        J Control Release. 2000; 66: 11-17
        • Sodian R.
        • Schmauss D.
        • Markert M.
        • et al.
        Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting.
        Ann Thorac Surg. 2008; 85: 2105-2108https://doi.org/10.1016/j.athoracsur.2007.12.033
        • Sodian R.
        • Weber S.
        • Markert M.
        • et al.
        Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart.
        J Thorac Cardiovasc Surg. 2008; 136: 1098-1099https://doi.org/10.1016/j.jtcvs.2008.03.055
        • Wilasrusmee C.
        • Suvikrom J.
        • Suthakorn J.
        • et al.
        Three-dimensional aortic aneurysm model and endovascular repair: an educational tool for surgical trainees.
        Int J Angiol. 2008; 17: 129-133
        • Bruyère F.
        • Leroux C.
        • Brunereau L.
        • et al.
        Rapid prototyping model for percutaneous nephrolithotomy training.
        J Endourol. 2008; 22: 91-96https://doi.org/10.1089/end.2007.0025
      1. Protos Eyewear website.
        (Available at:)
        http://www.protoseyewear.com/
        Date: 2017
        Date accessed: August 30, 2017
      2. Natural Machines website.
        (Available at:)
        http://www.naturalmachines.com/
        Date: 2017
        Date accessed: August 30, 2017
        • Kessler A.M.
        A 3-D Printed Car, Ready for the Road. The New York Times.
        (Available at:)
        http://nyti.ms/2u6eiUj
        Date: 2015
        Date accessed: August 30, 2017
        • Davies C.T.
        • Baird L.M.
        • Jacobson M.D.
        • et al.
        Reed Smith white paper: 3D printing of medical devices: when a novel technology meets traditional legal principles.
        (Reed Smith website; Available at:)
        http://bit.ly/2oH5PY4
        Date accessed: August 30, 2017
        • SME Medical Additive Manufacturing/3D Printing Workgroup
        Society for manufacturing engineers website.
        (Available at:)
        http://www.sme.org/medical-am3dp-workgroup/
        Date accessed: August 30, 2017
        • RSNA 3D Printing Special Interest Group
        Radiological society of North America website.
        (Available at:)
        http://www.rsna.org/3D-Printing-SIG/
        Date accessed: August 30, 2017
        • Kijima S.
        • Sasaki T.
        • Nagata K.
        • et al.
        Preoperative evaluation of colorectal cancer using CT colonography, MRI, and PET/CT.
        World J Gastroenterol. 2014; 20: 16964-16975https://doi.org/10.3748/wjg.v20.i45.16964
        • Sakamoto T.
        Roles of universal three-dimensional image analysis devices that assist surgical operations.
        J Hepatobiliary Pancreat Sci. 2014; 21: 230-234https://doi.org/10.1002/jhbp.88
        • Fayad L.M.
        • Patra A.
        • Fishman E.K.
        Value of 3D CT in defining skeletal complications of orthopedic hardware in the postoperative patient.
        AJR Am J Roentgenol. 2009; 193: 1155-1163https://doi.org/10.2214/AJR.09.2610
        • Farooqi K.M.
        • Saeed O.
        • Zaidi A.
        • et al.
        3D printing to guide ventricular assist device placement in adults with Congenital Heart Disease and heart failure.
        JACC Heart Fail. 2016; 4: 301-311https://doi.org/10.1016/j.jchf.2016.01.012
        • Schmauss D.
        • Haeberle S.
        • Hagl C.
        • et al.
        Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience.
        Eur J Cardiothorac Surg. 2015; 47: 1044-1052https://doi.org/10.1093/ejcts/ezu310
        • Costello J.P.
        • Olivieri L.J.
        • Su L.
        • et al.
        Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians.
        Congenit Heart Dis. 2015; 10: 185-190https://doi.org/10.1111/chd.12238
        • Dhir V.
        • Itoi T.
        • Fockens P.
        • et al.
        Novel ex vivo model for hands-on teaching of and training in EUS-guided biliary drainage: creation of “Mumbai EUS” stereolithography/3D printing bile duct prototype (with videos).
        Gastrointest Endosc. 2015; 81: 440-446https://doi.org/10.1016/j.gie.2014.09.011
        • Malik H.H.
        • Darwood A.R.J.
        • Shaunak S.
        • et al.
        Three-dimensional printing in surgery: a review of current surgical applications.
        J Surg Res. 2015; 199: 512-522https://doi.org/10.1016/j.jss.2015.06.051
        • Itagaki M.W.
        Using 3D printed models for planning and guidance during endovascular intervention: a technical advance.
        Diagn Interv Radiol. 2015; 21: 338-341https://doi.org/10.5152/dir.2015.14469
        • Anderson J.R.
        • Thompson W.L.
        • Alkattan A.K.
        • et al.
        Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models.
        J Neurointerv Surg. 2016; 8: 517-520https://doi.org/10.1136/neurintsurg-2015-011686
        • Weinstock P.
        • Prabhu S.P.
        • Flynn K.
        • et al.
        Optimizing cerebrovascular surgical and endovascular procedures in children via personalized 3D printing.
        J Neurosurg Pediatr. 2015; 16: 584-589https://doi.org/10.3171/2015.3.PEDS14677
        • Huang W.
        • Zhang X.
        3D Printing: print the future of ophthalmology.
        Invest Ophthalmol Vis Sci. 2014; 55: 5380-5381https://doi.org/10.1167/iovs.14-15231
        • Obregon F.
        • Vaquette C.
        • Ivanovski S.
        • et al.
        Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering.
        J Dent Res. 2015; 94: 143-152https://doi.org/10.1177/0022034515588885
        • Groth C.
        • Kravitz N.D.
        • Jones P.E.
        • et al.
        Three-dimensional printing technology.
        J Clin Orthod. 2014; 48: 475S-485S
        • Eltorai A.E.M.
        • Nguyen E.
        • Daniels A.H.
        Three-dimensional printing in orthopedic surgery.
        Orthopedics. 2015; 38 (Lindeque BGP, ed): 684-687https://doi.org/10.3928/01477447-20151016-05
        • VanKoevering K.K.
        • Hollister S.J.
        • Green G.E.
        Advances in 3-dimensional printing in otolaryngology: a review.
        JAMA Otolaryngol Head Neck Surg. 2017; 143: 178-183https://doi.org/10.1001/jamaoto.2016.3002
        • Zopf D.A.
        • Hollister S.J.
        • Nelson M.E.
        • et al.
        Bioresorbable airway splint created with a three-dimensional printer.
        N Engl J Med. 2013; 368: 2043-2045https://doi.org/10.1056/NEJMc1206319
        • Chae M.P.
        • Rozen W.M.
        • McMenamin P.G.
        • et al.
        Emerging applications of bedside 3D printing in plastic surgery.
        Front Surg. 2015; 2: 25https://doi.org/10.3389/fsurg.2015.00025
        • Jastifer J.R.
        • Gustafson P.A.
        Three-dimensional printing and surgical simulation for preoperative planning of deformity correction in foot and ankle surgery.
        J Foot Ankle Surg. 2017; 56: 191-195https://doi.org/10.1053/j.jfas.2016.01.052
        • Bustamante S.
        • Shravan Cheruku M.D.
        3D printing for simulation in thoracic anesthesia.
        J Cardiothorac Vasc Anesth. 2016; 30: 61-63https://doi.org/10.1053/j.jvca.2016.05.044
        • Burleson S.
        • Baker J.
        • Hsia A.T.
        • et al.
        Use of 3D printers to create a patient-specific 3D bolus for external beam therapy.
        J Appl Clin Med Phys. 2015; 16: 5247
        • Zein N.N.
        • Hanouneh I.A.
        • Bishop P.D.
        • et al.
        Three-dimensional print of a liver for preoperative planning in living donor liver transplantation.
        Liver Transpl. 2013; 19: 1304-1310https://doi.org/10.1002/lt.23729
        • Youssef R.F.
        • Spradling K.
        • Yoon R.
        • et al.
        Applications of three-dimensional printing technology in urological practice.
        BJU Int. 2015; 116: 697-702https://doi.org/10.1111/bju.13183
        • Hoch E.
        • Tovar G.E.M.
        • Borchers K.
        Bioprinting of artificial blood vessels: current approaches towards a demanding goal.
        Eur J Cardiothorac Surg. 2014; 46: 767-778https://doi.org/10.1093/ejcts/ezu242
        • Matsumoto J.S.
        • Morris J.M.
        • Rose P.S.
        3-Dimensional printed anatomic models as planning aids in complex oncology surgery.
        JAMA Oncol. 2016; 2: 1121-1122https://doi.org/10.1001/jamaoncol.2016.2469
        • Tack P.
        • Victor J.
        • Gemmel P.
        • et al.
        3D-printing techniques in a medical setting: a systematic literature review.
        Biomed Eng Online. 2016; 15: 115https://doi.org/10.1186/s12938-016-0236-4
        • Mao Y.
        • Xu C.
        • Xu J.
        • et al.
        The use of customized cages in revision total hip arthroplasty for Paprosky type III acetabular bone defects.
        Int Orthop. 2015; 39: 2023-2030https://doi.org/10.1007/s00264-015-2965-6
        • Chung K.J.
        • Hong D.Y.
        • Kim Y.T.
        • et al.
        Preshaping plates for minimally invasive fixation of calcaneal fractures using a real-size 3D-printed model as a preoperative and intraoperative tool.
        Foot Ankle Int. 2014; 35: 1231-1236https://doi.org/10.1177/1071100714544522
        • Huang H.
        • Hsieh M.-F.
        • Zhang G.
        • et al.
        Improved accuracy of 3D-printed navigational template during complicated tibial plateau fracture surgery.
        Australas Phys Eng Sci Med. 2015; 38: 109-117https://doi.org/10.1007/s13246-015-0330-0.1
        • Pacione D.
        • Tanweer O.
        • Berman P.
        • et al.
        The utility of a multimaterial 3D printed model for surgical planning of complex deformity of the skull base and craniovertebral junction.
        J Neurosurg. 2016; 125: 1194-1197https://doi.org/10.3171/2015.12.JNS151936
        • Zeng C.
        • Xing W.
        • Wu Z.
        • et al.
        A combination of three-dimensional printing and computer-assisted virtual surgical procedure for preoperative planning of acetabular fracture reduction.
        Injury. 2016; 47: 2223-2227https://doi.org/10.1016/j.injury.2016.03.015
        • Silberstein J.L.
        • Maddox M.M.
        • Dorsey P.
        • et al.
        Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study.
        Urology. 2014; 84: 268-272https://doi.org/10.1016/j.urology.2014.03.042
        • Wake N.
        • Rude T.
        • Kang S.K.
        • et al.
        3D printed renal cancer models derived from MRI data: application in pre-surgical planning.
        Abdom Radiol. 2017; 42: 1501-1509https://doi.org/10.1007/s00261-016-1022-2
        • Pepper J.
        • Petrou M.
        • Rega F.
        • et al.
        Implantation of an individually computer-designed and manufactured external support for the Marfan aortic root.
        Multimed Man Cardiothorac Surg. 2013; 2013 (mmt004)https://doi.org/10.1093/mmcts/mmt004
        • Hossien A.
        • Gesomino S.
        • Maessen J.
        • et al.
        The interactive use of multi-dimensional modeling and 3D printing in preplanning of type A aortic dissection.
        J Card Surg. 2016; 31: 441-445https://doi.org/10.1111/jocs.12772
        • Wang Z.
        • Luo H.
        • Gao C.
        • et al.
        Three-dimensional printing model for the postoperative follow-up of atrial septal defect.
        Int J Cardiol. 2016; 222: 891-892https://doi.org/10.1016/j.ijcard.2016.08.046
        • Weisman J.A.
        • Nicholson J.C.
        • Tappa K.
        • et al.
        Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications.
        Int J Nanomedicine. 2015; 10: 357-370https://doi.org/10.2147/IJN.S74811
        • Weisman J.A.
        • Jammalamadaka U.
        • Tappa K.
        • et al.
        3D printing antibiotic and chemotherapeutic eluting catheters and constructs.
        J Vasc Interv Radiol. 2015; 26: S12https://doi.org/10.1016/j.jvir.2014.12.040
        • Ballard D.H.
        • Weisman J.A.
        • Jammalamadaka U.
        • et al.
        Three-dimensional printing of bioactive hernia meshes: in vitro proof of principle.
        Surgery. 2017; 161: 1479-1481https://doi.org/10.1016/j.surg.2016.08.033
        • Tappa K.
        • Jammalamadaka U.
        • Ballard D.H.
        • et al.
        Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study.
        PLoS ONE. 2017; 12 (e0182929)https://doi.org/10.1371/journal.pone.0182929
        • Rankin T.M.
        • Giovinco N.A.
        • Cucher D.J.
        • et al.
        Three-dimensional printing surgical instruments: are we there yet?.
        J Surg Res. 2014; 189: 193-197https://doi.org/10.1016/j.jss.2014.02.020
        • Fuller S.M.
        • Butz D.R.
        • Vevang C.B.
        • et al.
        Application of 3-dimensional printing in hand surgery for production of a novel bone reduction clamp.
        J Hand Surg Am. 2014; 39: 1840-1845https://doi.org/10.1016/j.jhsa.2014.06.009
        • Coletta E.M.
        Care of the elderly patient with lower extremity amputation.
        J Am Board Fam Pract. 2000; 13: 23-34
        • Dillingham T.R.
        • Pezzin L.E.
        • MacKenzie E.J.
        • et al.
        Use and satisfaction with prosthetic devices among persons with trauma-related amputations: a long-term outcome study.
        Am J Phys Med Rehabil. 2001; 80: 563-571
        • Cunha J.A.M.
        • Mellis K.
        • Sethi R.
        • et al.
        Evaluation of PC-ISO for customized, 3D printed, gynecologic 192-Ir HDR brachytherapy applicators.
        J Appl Clin Med Phys. 2015; 16: 5168
        • Ricotti R.
        • Vavassori A.
        • Bazani A.
        • et al.
        3D-printed applicators for high dose rate brachytherapy: dosimetric assessment at different infill percentage.
        Phys Med. 2016; 32: 1698-1706https://doi.org/10.1016/j.ejmp.2016.08.016
        • Sethi R.
        • Cunha A.
        • Mellis K.
        • et al.
        Clinical applications of custom-made vaginal cylinders constructed using three-dimensional printing technology.
        J Contemp Brachytherapy. 2016; 8: 208-214https://doi.org/10.5114/jcb.2016.60679
        • Ventola C.L.
        Medical applications for 3D printing: current and projected uses.
        P T. 2014; 39: 704-711
        • Decker S.
        • Ford J.
        • Ching J.
        Patient-specific jaw splint for edentulous and partially edentulous patients presenting with jaw fractures.
        Int J Comput Assist Radiol Surg. 2014; 9: S258-S259
        • Mitsouras D.
        • Liacouras P.
        • Imanzadeh A.
        • et al.
        Medical 3D printing for the radiologist.
        Radiographics. 2015; 35: 1965-1988https://doi.org/10.1148/rg.2015140320
        • Jin Y.
        • Plott J.
        • Chen R.
        • et al.
        Additive manufacturing of custom orthoses and prostheses—a review.
        Procedia CIRP. 2015; 36: 199-204https://doi.org/10.1016/j.procir.2015.02.125
        • Tanaka K.S.
        • Lightdale-Miric N.
        Advances in 3D-printed pediatric prostheses for upper extremity differences.
        J Bone Joint Surg Am. 2016; 98: 1320-1326https://doi.org/10.2106/JBJS.15.01212
        • Christensen A.
        • Rybicki F.J.
        Maintaining safety and efficacy for 3D printing in medicine.
        3D Printing in Medicine. 2017; 3https://doi.org/10.1186/s41205-016-0009-5
        • Roundtable on Health Literacy
        • Board on Population Health and Public Health Practice
        • Health and Medicine Division
        • et al.
        Relevance of health literacy to precision medicine: proceedings of a workshop.
        (Washington (DC): National Academies Press (US); Available at:)
        • Michalski M.H.
        • Ross J.S.
        The shape of things to come: 3D printing in medicine.
        JAMA. 2014; 312: 2213-2214https://doi.org/10.1001/jama.2014.9542
        • Bernhard J.C.
        • Isotani S.
        • Matsugasumi T.
        • et al.
        Personalized 3D printed model of the kidney and tumor anatomy: a useful tool for patient education.
        World J Urol. 2016; 34: 337-345https://doi.org/10.1007/s00345-015-1632-2
        • Tominaga T.
        • Takagi K.
        • Takeshita H.
        • et al.
        Usefulness of three-dimensional printing models for patients with stoma construction.
        Case Rep Gastroenterol. 2016; 10: 57-62https://doi.org/10.1159/000442663
        • Andolfi C.
        • Plana A.
        • Kania P.
        • et al.
        Usefulness of three-dimensional modeling in surgical planning, resident training, and patient education.
        J Laparoendosc Adv Surg Tech A. 2017; 27: 512-515https://doi.org/10.1089/lap.2016.0421
        • Trace A.P.
        • Ortiz D.
        • Deal A.
        • et al.
        Radiology's emerging role in 3-D printing applications in health care.
        J Am Coll Radiol. 2016; 13 (e4): 856-862https://doi.org/10.1016/j.jacr.2016.03.025
        • McMenamin P.G.
        • Quayle M.R.
        • McHenry C.R.
        • et al.
        The production of anatomical teaching resources using three-dimensional (3D) printing technology.
        Anat Sci Educ. 2014; 7: 479-486https://doi.org/10.1002/ase.1475
        • Lim K.H.A.
        • Loo Z.Y.
        • Goldie S.J.
        • et al.
        Use of 3D printed models in medical education: a randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy: use of 3D prints in medical education.
        Anat Sci Educ. 2016; 9: 213-221https://doi.org/10.1002/ase.1573
        • Adams J.W.
        • Paxton L.
        • Dawes K.
        • et al.
        3D printed reproductions of orbital dissections: a novel mode of visualising anatomy for trainees in ophthalmology or optometry.
        Br J Ophthalmol. 2015; 99: 1162-1167https://doi.org/10.1136/bjophthalmol-2014-306189
        • Wang K.
        • Wu C.
        • Qian Z.
        • et al.
        Dual-material 3D printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms.
        Addit Manuf. 2016; 12: 31-37https://doi.org/10.1016/j.addma.2016.06.006
        • Yoo S.-J.
        • Spray T.
        • Austin E.H.
        • et al.
        Hands-on surgical training of congenital heart surgery using 3-dimensional print models.
        J Thorac Cardiovasc Surg. 2017; 153: 1530-1540
        • Cabalag M.S.
        • Chae M.P.
        • Miller G.S.
        • et al.
        Use of three-dimensional printed “haptic” models for preoperative planning in an Australian plastic surgery unit.
        ANZ J Surg. 2015; https://doi.org/10.1111/ans.13168
        • Xu Y.
        • Fan F.
        • Kang N.
        • et al.
        Tissue engineering of human nasal alar cartilage precisely by using three-dimensional printing.
        Plast Reconstr Surg. 2015; 135: 451-458https://doi.org/10.1097/PRS.0000000000000856
        • Nishimoto S.
        • Sotsuka Y.
        • Kawai K.
        • et al.
        Three-dimensional mock-up model for chondral framework in auricular reconstruction, built with a personal three-dimensional printer.
        Plast Reconstr Surg. 2014; 134: 180-181https://doi.org/10.1097/PRS.0000000000000263
        • Bos E.J.
        • Scholten T.
        • Song Y.
        • et al.
        Developing a parametric ear model for auricular reconstruction: a new step towards patient-specific implants.
        J Craniomaxillofac Surg. 2015; 43: 390-395https://doi.org/10.1016/j.jcms.2014.12.016
        • Chae M.P.
        • Lin F.
        • Spychal R.T.
        • et al.
        3D-printed haptic “reverse” models for preoperative planning in soft tissue reconstruction: a case report.
        Microsurgery. 2015; 35: 148-153https://doi.org/10.1002/micr.22293
        • Chae M.P.
        • Hunter-Smith D.J.
        • Spychal R.T.
        • et al.
        3D volumetric analysis for planning breast reconstructive surgery.
        Breast Cancer Res Treat. 2014; 146: 457-460https://doi.org/10.1007/s10549-014-3028-1
        • Hermsen J.L.
        • Burke T.M.
        • Seslar S.P.
        • et al.
        Scan, plan, print, practice, perform: development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery.
        J Thorac Cardiovasc Surg. 2017; 153: 132-140https://doi.org/10.1016/j.jtcvs.2016.08.007
        • Wang H.
        • Liu J.
        • Zheng X.
        • et al.
        Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies.
        Sci Rep. 2015; 5: 10945https://doi.org/10.1038/srep10945
        • Wurm G.
        • Tomancok B.
        • Pogady P.
        • et al.
        Cerebrovascular stereolithographic biomodeling for aneurysm surgery.
        J Neurosurg. 2004; 100 (Technical note): 139-145https://doi.org/10.3171/jns.2004.100.1.0139
        • Abdel-Sayed P.
        • Kalejs M.
        • von Segesser L.K.
        A new training set-up for trans-apical aortic valve replacement.
        Interact Cardiovasc Thorac Surg. 2009; 8: 599-601https://doi.org/10.1510/icvts.2009.204149
        • Bustamante S.
        • Bose S.
        • Bishop P.
        • et al.
        Novel application of rapid prototyping for simulation of bronchoscopic anatomy.
        J Cardiothorac Vasc Anesth. 2014; 28: 1122-1125https://doi.org/10.1053/j.jvca.2013.08.015
        • Bieniosek M.F.
        • Lee B.J.
        • Levin C.S.
        Technical note: characterization of custom 3D printed multimodality imaging phantoms.
        Med Phys. 2015; 42: 5913-5918https://doi.org/10.1118/1.4930803
        • Baron K.B.
        • Choi A.D.
        • Chen M.Y.
        Low radiation dose calcium scoring: evidence and techniques.
        Curr Cardiovasc Imaging Rep. 2016; 9: 12https://doi.org/10.1007/s12410-016-9373-1
        • Mitsouras D.
        • Lee T.C.
        • Liacouras P.
        • et al.
        Three-dimensional printing of MRI-visible phantoms and MR image-guided therapy simulation.
        Magn Reson Med. 2017; 77: 613-622https://doi.org/10.1002/mrm.26136
        • Ebert L.C.
        • Thali M.J.
        • Ross S.
        Getting in touch—3D printing in forensic imaging.
        Forensic Sci Int. 2011; 211: e1-e6https://doi.org/10.1016/j.forsciint.2011.04.022
        • Woźniak K.
        • Rzepecka-Woźniak E.
        • Moskała A.
        • et al.
        Weapon identification using antemortem computed tomography with virtual 3D and rapid prototype modeling—a report in a case of blunt force head injury.
        Forensic Sci Int. 2012; 222: e29-e32https://doi.org/10.1016/j.forsciint.2012.06.012
        • Kettner M.
        • Schmidt P.
        • Potente S.
        • et al.
        Reverse engineering—rapid prototyping of the skull in forensic trauma analysis.
        J Forensic Sci. 2011; 56: 1015-1017https://doi.org/10.1111/j.1556-4029.2011.01764
        • Laronda M.M.
        • Rutz A.L.
        • Xiao S.
        • et al.
        A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice.
        Nat Commun. 2017; 8: 15261
        • Kang H.-W.
        • Lee S.J.
        • Ko I.K.
        • et al.
        A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.
        Nat Biotechnol. 2016; 34: 312-319
        • United States Food and Drug Administration
        Highlights of prescribing information—spritam.
        (Available at:)
        • Goyanes A.
        • Det-Amornrat U.
        • Wang J.
        • et al.
        3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.
        J Control Release. 2016; 234: 41-48https://doi.org/10.1016/j.jconrel.2016.05.034
        • Homan K.A.
        • Kolesky D.B.
        • Skylar-Scott M.A.
        • et al.
        Bioprinting of 3D convoluted renal proximal tubules on perfusable chips.
        Sci Rep. 2016; 6: 34845https://doi.org/10.1038/srep34845
        • Pourchet L.J.
        • Thepot A.
        • Albouy M.
        • et al.
        Human skin 3D bioprinting using scaffold-free approach.
        Adv Healthc Mater. 2017; 6https://doi.org/10.1002/adhm.201601101
        • Borovjagin A.V.
        • Ogle B.M.
        • Berry J.L.
        • et al.
        From microscale devices to 3D printing: advances in fabrication of 3D cardiovascular tissues.
        Circ Res. 2017; 120: 150-165https://doi.org/10.1161/CIRCRESAHA.116.308538
        • Sawkins M.J.
        • Mistry P.
        • Brown B.N.
        • et al.
        Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair.
        Biofabrication. 2015; 7: 035004https://doi.org/10.1088/1758-5090/7/3/035004
        • Hockaday L.A.
        • Kang K.H.
        • Colangelo N.W.
        • et al.
        Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds.
        Biofabrication. 2012; 4: 035005https://doi.org/10.1088/1758-5082/4/3/035005
        • Zhang K.
        • Fu Q.
        • Yoo J.
        • et al.
        3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment.
        Acta Biomater. 2017; 50: 154-164https://doi.org/10.1016/j.actbio.2016.12.008
        • Mannoor M.S.
        • Jiang Z.
        • James T.
        • et al.
        3D printed bionic ears.
        Nano Lett. 2013; 13: 2634-2639https://doi.org/10.1021/nl4007744
        • Zuniga J.
        • Katsavelis D.
        • Peck J.
        • et al.
        Cyborg beast: a low-cost 3D-printed prosthetic hand for children with upper-limb differences.
        BMC Res Notes. 2015; 8: 10https://doi.org/10.1186/s13104-015-0971-9
        • Ripley B.
        • Levin D.
        • Kelil T.
        • et al.
        3D printing from MRI data: harnessing strengths and minimizing weaknesses.
        J Magn Reson Imaging. 2017; 45: 635-645https://doi.org/10.1002/jmri.25526
        • Matsumoto J.S.
        • Morris J.M.
        • Foley T.A.
        • et al.
        Three-dimensional physical modeling: applications and experience at Mayo Clinic.
        Radiographics. 2015; 35: 1989-2006https://doi.org/10.1148/rg.2015140260
        • Soejima Y.
        • Shimada M.
        • Suehiro T.
        • et al.
        Outcome analysis in adult-to-adult living donor liver transplantation using the left lobe.
        Liver Transpl. 2003; 9: 581-586https://doi.org/10.1053/jlts.2003.50114
        • Atala A.
        • Bauer S.B.
        • Soker S.
        • et al.
        Tissue-engineered autologous bladders for patients needing cystoplasty.
        Lancet. 2006; 367: 1241-1246https://doi.org/10.1016/S0140-6736(06)68438-9
        • Raya-Rivera A.
        • Esquiliano D.R.
        • Yoo J.J.
        • et al.
        Tissue-engineered autologous urethras for patients who need reconstruction: an observational study.
        Lancet. 2011; 377: 1175-1182https://doi.org/10.1016/S0140-6736(10)62354-9
        • Chepelev L.
        • Giannopoulos A.
        • Tang A.
        • et al.
        Medical 3D printing: methods to standardize terminology and report trends.
        3D Printing in Med. 2017; 3: 4https://doi.org/10.1186/s41205-017-0012-5
        • Javan R.
        • Herrin D.
        • Tangestanipoor A.
        Understanding spatially complex segmental and branch anatomy using 3D printing.
        Acad Radiol. 2016; 23: 1183-1189https://doi.org/10.1016/j.acra.2016.04.010
        • Leng S.
        • McGee K.
        • Morris J.
        • et al.
        Anatomic modeling using 3D printing: quality assurance and optimization.
        3D Printing in Med. 2017; 3: 6https://doi.org/10.1186/s41205-017-0014-3
        • Di Prima M.
        • Coburn J.
        • Hwang D.
        • et al.
        Additively manufactured medical products—the FDA perspective.
        3D Printing in Med. 2015; 2: 1https://doi.org/10.1186/s41205-016-0005-9
        • Morrison R.J.
        • Hollister S.J.
        • Niedner M.F.
        • et al.
        Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients.
        Sci Transl Med. 2015; 7 (285ra64)https://doi.org/10.1126/scitranslmed.3010825
        • Yu A.W.
        • Khan M.
        On-demand three-dimensional printing of surgical supplies in conflict zones.
        J Trauma Acute Care Surg. 2015; 78: 201-203https://doi.org/10.1097/TA.0000000000000481
        • Cheng G.Z.
        • San Jose Estepar R.
        • Folch E.
        • et al.
        Three-dimensional printing and 3D slicer: powerful tools in understanding and treating structural lung disease.
        Chest. 2016; 149: 1136-1142https://doi.org/10.1016/j.chest.2016.03.001
        • DICOM approves new working group to address 3D printing
        Medical Imaging and Technology Alliance website.
        (Available at:)
        http://bit.ly/2wIFTzm
        Date accessed: August 30, 2017
      3. Process Validation: General Principles and Practices.
        (United States Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation Research, Center for Veterinary Medicine; Available at:)
        • Preece D.
        • Williams S.B.
        • Lam R.
        • et al.
        “Let's get physical”: advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.
        Anat Sci Educ. 2013; 6: 216-224https://doi.org/10.1002/ase.1345
        • Rogers-Vizena C.R.
        • Sporn S.F.
        • Daniels K.M.
        • et al.
        Cost-benefit analysis of three-dimensional craniofacial models for midfacial distraction: a pilot study.
        Cleft Palate Craniofac J. 2016; 54: 612-617https://doi.org/10.1597/15-281
        • Biglino G.
        • Capelli C.
        • Wray J.
        • et al.
        3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability.
        BMJ Open. 2015; 5: e007165https://doi.org/10.1136/bmjopen-2014-007165
      4. NIH 3D Print Exchange.
        (National Institutes of Health; Available at:)
        http://3dprint.nih.gov
        Date accessed: August 30, 2017