Rationale and Objectives
Artificial intelligence (AI) is playing a growing role in the field of radiology.
This article seeks to help readers quantify its impact when put into practice, using
a lung nodule flagger as an example.
Materials and Methods
The one-time and ongoing costs associated with AI are explored. Costs are divided
into three categories: direct costs, costs associated with operational changes, and
downstream costs. Examples of each are provided.
Results
A framework for estimating the financial impact of AI is provided.
Conclusion
The impact of AI is quantifiable, but estimates of its financial impact may not be
portable across contexts. Different organizations may implement AI in different ways
due to differences in clinical practices. Furthermore, different organizations have
different hurdle rates for their investments. Finally, international cost-effectiveness
analyses may not be generalizable due to differences in both practice patterns and
the valuation placed upon quality. When quantifying the impact of AI, organizations
should consider relying upon pilots and data from other similarly-situated organizations.
Key Words
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Academic RadiologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
REFERENCES
- Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program.Radiology. 2002; 225: 685-692
- Reimbursement of apps for mental health: current practices and potential pathways.JMIR Ment Health. 2019;
- The McDonaldization of radiology.J Am Coll Radiol. 2018; 15: 689-691
- Presentation at computed tomography (CT) scan of the thorax and first year diagnostic and treatment utilization among patients diagnosed with lung cancer.PLoS One. 2017; 12e0181319
- Discordance in Clinical Recommendations regarding the Use of Imaging.Am J Med Qual. 2019; 21 (1062860619851561)
- International survey on willingness‐to‐pay (WTP) for one additional QALY gained: what is the threshold of cost effectiveness?.Health Econ. 2010; 19: 422-437
Article info
Publication history
Accepted:
September 8,
2019
Received:
August 1,
2019
Identification
Copyright
© 2019 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.