Advertisement

Noninterpretive Uses of Artificial Intelligence in Radiology

Published:February 12, 2020DOI:https://doi.org/10.1016/j.acra.2020.01.012
      We deem a computer to exhibit artificial intelligence (AI) when it performs a task that would normally require intelligent action by a human. Much of the recent excitement about AI in the medical literature has revolved around the ability of AI models to recognize anatomy and detect pathology on medical images, sometimes at the level of expert physicians. However, AI can also be used to solve a wide range of noninterpretive problems that are relevant to radiologists and their patients. This review summarizes some of the newer noninterpretive uses of AI in radiology.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chartrand G.
        • Cheng P.M.
        • Vorontsov E.
        • et al.
        Deep learning: a primer for radiologists.
        Radiographics. 2017; 37: 2113-2131https://doi.org/10.1148/rg.2017170077
        • Esteva A.
        • Kuprel B.
        • Novoa R.A.
        • et al.
        Dermatologist-level classification of skin cancer with deep neural networks.
        Nature. 2017; 542: 115-118https://doi.org/10.1038/nature21056
        • Gulshan V.
        • Peng L.
        • Coram M.
        • et al.
        Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.
        JAMA. 2016; 316: 2402-2410https://doi.org/10.1001/jama.2016.17216
        • Liu Y.
        • Gadepalli K.
        • Norouzi M.
        • et al.
        Detecting cancer metastases on gigapixel pathology images.
        CoRR. 2017; abs/1703.02442
        • Rajpurkar P.
        • Irvin J.
        • Ball R.L.
        • et al.
        Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists.
        PLoS Med. 2018; 15: e1002686
        • Choy G.
        • Khalilzadeh O.
        • Michalski M.
        • et al.
        Current applications and future impact of machine learning in radiology.
        Radiology. 2018; 288: 318-328https://doi.org/10.1148/radiol.2018171820
        • Lakhani P.
        • Prater A.B.
        • Hutson R.K.
        • et al.
        Machine learning in radiology: applications beyond image interpretation.
        J Am Coll Radiol. 2018; 15: 350-359https://doi.org/10.1016/j.jacr.2017.09.044
        • European Society of Radiology (ESR)
        What the radiologist should know about artificial intelligence — an ESR white paper.
        Insights Imaging. 2019; 10: 44https://doi.org/10.1186/s13244-019-0738-2
        • Langlotz C.P.
        • Allen B.
        • Erickson B.J.
        • et al.
        A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop.
        Radiology. 2019; : 190613https://doi.org/10.1148/radiol.2019190613
        • Dargan R.
        AI-based applications boost image quality.
        Revolution in AI will benefit image quality and 3D print modeling.2019
        • Higaki T.
        • Nakamura Y.
        • Zhou J.
        • et al.
        Deep learning reconstruction at ct: phantom study of the image characteristics.
        Acad Radiol. 2020; 27: 82-87https://doi.org/10.1016/j.acra.2019.09.008
        • Chen H.
        • Zhang Y.
        • Kalra M.K.
        • et al.
        Low-dose CT with a residual encoder-decoder convolutional neural network.
        IEEE Trans Med Imaging. 2017; 36: 2524-2535https://doi.org/10.1109/TMI.2017.2715284
        • Dong C.
        • Loy C.C.
        • He K.
        • Tang X.
        Image super-resolution using deep convolutional networks.
        IEEE Trans Pattern Anal Mach Intell. 2016; 38: 295-307https://doi.org/10.1109/TPAMI.2015.2439281
        • Ronneberger O.
        • Fischer P.
        • Brox T.
        U-net: convolutional networks for biomedical image segmentation.
        CoRR. 2015; abs/1505.04597
        • Jiang D.
        • Dou W.
        • Vosters L.
        • et al.
        Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network.
        Jpn J Radiol. 2018; 36: 566-574
        • Yang Q.
        • Yan P.
        • Zhang Y.
        • et al.
        Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss.
        IEEE Trans Med Imaging. 2018; 37: 1348-1357https://doi.org/10.1109/TMI.2018.2827462
        • Kang E.
        • Chang W.
        • Yoo J.
        • et al.
        Deep convolutional framelet denoising for low-dose CT via wavelet residual network.
        IEEE Trans Med imaging. 2018; 37: 1358-1369
        • Chen H.
        • Zhang Y.
        • Zhang W.
        • et al.
        Low-dose CT via convolutional neural network.
        Biomed Opt Expr. 2017; 8: 679-694https://doi.org/10.1364/BOE.8.000679
        • Ledig C.
        • Theis L.
        • Huszar F.
        • et al.
        Photo-realistic single image super-resolution using a generative adversarial network.
        CoRR. 2016; abs/1609.04802
        • Wang G.
        • Ye J.C.
        • Mueller K.
        • et al.
        Image reconstruction is a new frontier of machine learning.
        IEEE Trans Med Imaging. 2018; 37: 1289-1296https://doi.org/10.1109/TMI.2018.2833635
        • Zhu B.
        • Liu J.Z.
        • Cauley S.F.
        • et al.
        Image reconstruction by domain-transform manifold learning.
        Nature. 2018; 555: 487-492https://doi.org/10.1038/nature25988
        • Quan T.M.
        • Nguyen-Duc T.
        • Jeong W.-K.
        Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss.
        IEEE Trans Med Imaging. 2018; 37: 1488-1497
        • Gözcü B.
        • Mahabadi R.K.
        • Li Y.-H.
        • et al.
        Learning-based compressive MRI.
        IEEE Trans Med Imaging. 2018; 37: 1394-1406
        • Cross N.
        • DeBerry J.
        • Daniel O.
        • et al.
        Diagnostic quality of machine learning algorithm for optimization of low dose computed tomography data.
        Society of Imaging Informatics in Medicine, 2017
        • Xiang L.
        • Qiao Y.
        • Nie D.
        • et al.
        Deep auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI.
        Neurocomputing. 2017; 267: 406-416
        • Ouyang J.
        • Chen K.T.
        • Gong E.
        • et al.
        Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss.
        Med Phys. 2019;
        • Chen K.T.
        • Gong E.
        • de Carvalho Macruz F.B.
        • et al.
        Ultra-low-dose 18F-Florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs.
        Radiology. 2019; 290: 649-656https://doi.org/10.1148/radiol.2018180940
        • Xu J.
        • Gong E.
        • Pauly J.M.
        • et al.
        200x low-dose PET reconstruction using deep learning.
        CoRR. 2017; abs/1712.04119
        • Xie S.
        • Zheng X.
        • Chen Y.
        • et al.
        Artifact removal using improved GoogLeNet for sparse-view CT reconstruction.
        Sci Rep. 2018; 8: 6700https://doi.org/10.1038/s41598-018-25153-w
        • Gong E.
        • Pauly J.M.
        • Wintermark M.
        • et al.
        Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.
        J Magn Reson Imaging. 2018; 48: 330-340https://doi.org/10.1002/jmri.25970
        • Higaki T.
        • Nakamura Y.
        • Tatsugami F.
        • et al.
        Improvement of image quality at CT and MRI using deep learning.
        Jpn J Radiol. 2019; 37: 73-80
        • Zhang Y.
        • Yu H.
        Convolutional neural network based metal artifact reduction in X-ray computed tomography.
        IEEE Trans Med Imaging. 2018; 37: 1370-1381
        • Kim K.H.
        • Park S.-H.
        Artificial neural network for suppression of banding artifacts in balanced steady-state free precession MRI.
        Magn Reson Imaging. 2017; 37: 139-146
        • Hauptmann A.
        • Arridge S.
        • Lucka F.
        • et al.
        Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning — proof of concept in congenital heart disease.
        Magn Reson. Med. 2019; 81: 1143-1156
        • Liu C.
        • Wu X.
        • Yu X.
        • et al.
        Fusing multi-scale information in convolution network for MR image super-resolution reconstruction.
        Biomed Eng Online. 2018; 17: 114
        • Park J.
        • Hwang D.
        • Kim K.Y.
        • et al.
        Computed tomography super-resolution using deep convolutional neural network.
        Phys Med Biol. 2018; 63: 145011
        • Wang S.
        • Su Z.
        • Ying L.
        • et al.
        Accelerating magnetic resonance imaging via deep learning.
        2016 IEEE 13th international symposium on biomedical imaging (ISBI). IEEE, 2016: 514-517
        • Hammernik K.
        • Klatzer T.
        • Kobler E.
        • et al.
        Learning a variational network for reconstruction of accelerated MRI data.
        CoRR. 2017; abs/1704.00447
        • Golkov V.
        • Dosovitskiy A.
        • Sperl J.I.
        • et al.
        q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans.
        IEEE Trans Med Imaging. 2016; 35: 1344-1351https://doi.org/10.1109/TMI.2016.2551324
        • Schreiber-Zinaman J.
        • Rosenkrantz A.B.
        Frequency and reasons for extra sequences in clinical abdominal MRI examinations.
        Abdom Radiol (NY). 2017; 42: 306-311https://doi.org/10.1007/s00261-016-0877-6
        • Muelly M.C.
        • Stoddard P.B.
        • Vasanwala S.S.
        Automated quality control of MR images using deep convolutional neural networks.
        Proceedings of international society for magnetic resonance in medicine (ISMRM), Honolulu, USA. 2017: 1-3
        • Esses S.J.
        • Lu X.
        • Zhao T.
        • et al.
        Automated image quality evaluation of T2-weighted liver MRI utilizing deep learning architecture.
        J Magn Reson Imaging. 2018; 47: 723-728https://doi.org/10.1002/jmri.25779
      1. S.H. Tajmir, Personal communication, 2019,

        • Brown A.D.
        • Marotta T.R.
        A natural language processing-based model to automate MRI brain protocol selection and prioritization.
        Acad Radiol. 2017; 24: 160-166
        • Brown A.D.
        • Marotta T.R.
        Using machine learning for sequence-level automated MRI protocol selection in neuroradiology.
        J Am Med Inf Assoc. 2017; 25: 568-571
        • Trivedi H.
        • Mesterhazy J.
        • Laguna B.
        • et al.
        Automatic determination of the need for intravenous contrast in musculoskeletal MRI examinations using IBM Watson’s natural language processing algorithm.
        J Digit Imaging. 2018; 31: 245-251
        • Goel A.
        • Shih G.
        • Rasiej M.
        • et al.
        Deep learning for comprehensive automated radiology protocolling.
        Society for Imaging Informatics in Medicine, 2018
        • Richardson M.L.
        MR protocol optimization with deep learning: a proof of concept.
        Curr Probl Diagn Radiol. 2019;
      2. published online, 21 October
        • Wang T.
        • Iankoulski A.
        • Mullarky B.
        Intelligent tools for a productive radiologist workflow: how machine learning enriches hanging protocols.
        White paper. GE Healthcare, 2013
        • Bergström P.
        Automated Setup of Display Protocols. Linköping University, 2015 (Master’s thesis)
        • Wong T.T.
        • Kazam J.K.
        • Rasiej M.J.
        Effect of analytics-driven worklists on musculoskeletal MRI interpretation times in an academic setting.
        Am J Roentgenol. 2019; 212: 1091-1095
        • Winkel D.J.
        • Heye T.
        • Weikert T.J.
        • et al.
        Evaluation of an AI-based detection software for acute findings in abdominal computed tomography scans: toward an automated work list prioritization of routine CT examinations.
        Investigat Radiol. 2019; 54: 55-59
        • Prevedello L.M.
        • Erdal B.S.
        • Ryu J.L.
        • et al.
        Automated critical test findings identification and online notification system using artificial intelligence in imaging.
        Radiology. 2017; 285: 923-931
        • Pons E.
        • Braun L.M.M.
        • Hunink M.G.M.
        • et al.
        Natural language processing in radiology: a systematic review.
        Radiology. 2016; 279: 329-343https://doi.org/10.1148/radiol.16142770
        • Tang A.
        • Tam R.
        • Cadrin-Chênevert A.
        • et al.
        Canadian Association of Radiologists white paper on artificial intelligence in radiology.
        Can Assoc Radiol J. 2018; 69: 120-135https://doi.org/10.1016/j.carj.2018.02.002
        • Chen P.-H.
        Essential elements of natural language processing: what the radiologist should know.
        Acad Radiol. 2020; 27: 6-12https://doi.org/10.1016/j.acra.2019.08.010
        • Weiss D.L.
        • Langlotz C.P.
        Structured reporting: patient care enhancement or productivity nightmare?.
        Radiology. 2008; 249https://doi.org/10.1148/radiol.2493080988
      3. 739–47
        • Morgan T.A.
        • Heilbrun M.E.
        • Kahn Jr C.E.
        Reporting initiative of the Radiological Society of North America: progress and new directions.
        Radiology. 2014; 273: 642-645https://doi.org/10.1148/radiol.14141227
        • Sippo D.A.
        • Warden G.I.
        • Andriole K.P.
        • et al.
        Automated extraction of BI-RADS final assessment categories from radiology reports with natural language processing.
        J Digit Imaging. 2013; 26: 989-994https://doi.org/10.1007/s10278-013-9616-5
        • Rosenkrantz A.B.
        Differences in perceptions among radiologists, referring physicians, and patients regarding language for incidental findings reporting.
        AJR Am J Roentgenol. 2017; 208: 140-143https://doi.org/10.2214/AJR.16.16633
        • Lacson R.
        • Prevedello L.M.
        • Andriole K.P.
        • et al.
        Factors associated with radiologists’ adherence to Fleischner Society guidelines for management of pulmonary nodules.
        J Am Coll Radiol. 2012; 9: 468-473https://doi.org/10.1016/j.jacr.2012.03.009
        • Chen M.C.
        • Ball R.L.
        • Yang L.
        • et al.
        Deep learning to classify radiology free-text reports.
        Radiology. 2018; 286: 845-852https://doi.org/10.1148/radiol.2017171115
        • Lakhani P.
        • Kim W.
        • Langlotz C.P.
        Automated detection of critical results in radiology reports.
        J Digit Imaging. 2012; 25: 30-36https://doi.org/10.1007/s10278-011-9426-6
        • Meng X.
        • Ganoe C.H.
        • Sieberg R.T.
        • et al.
        Assisting radiologists with reporting urgent findings to referring physicians: a machine learning approach to identify cases for prompt communication.
        J Biomed Inf. 2019; 93: 103169
        • Smith-Bindman R.
        • Kwan M.L.
        • Marlow E.C.
        • et al.
        Trends in use of medical imaging in US health care systems and in Ontario, Canada, 2000–2016.
        JAMA. 2019; 322: 843-856https://doi.org/10.1001/jama.2019.11456
        • Avey G.D.
        • Belden D.S.
        • Zea R.D.
        • et al.
        Factors predicting the time-length variability of identically protocoled MRI exams.
        J Magn Reson Imaging. 2019; 49: e265-e270https://doi.org/10.1002/jmri.26591
        • Muelly M.
        • Stoddard P.B.
        • Vasanwala S.S.
        Using machine learning with dynamic exam block lengths to decrease patient wait time and optimize MRI schedule fill rate.
        International society of magnetic resonance in medicine, Honolulu, March. 2017
        • Curtis C.
        • Liu C.
        • Bollerman T.J.
        • et al.
        Machine learning for predicting patient wait times and appointment delays.
        J Am Coll Radiol. 2018; 15: 1310-1316https://doi.org/10.1016/j.jacr.2017.08.021
        • Nelson A.
        • Herron D.
        • Rees G.
        • et al.
        Predicting scheduled hospital attendance with artificial intelligence.
        NPJ Digit Med. 2019; 2: 26https://doi.org/10.1038/s41746-019-0103-3
        • Kurasawa H.
        • Hayashi K.
        • Fujino A.
        • et al.
        Machine-learning-based prediction of a missed scheduled clinical appointment by patients with diabetes.
        J Diabetes Sci Technol. 2016; 10: 730-736https://doi.org/10.1177/1932296815614866
        • Hefley D.
        • Hefley T.
        Scheduling personnel with an artificial intelligence program.
        MLO Med Lab Obs. 1989; 21: 85-6,88
      4. F. Lazzeri, H. Lu, Optimizing project staffing to improve profitability with Cortana intelligence, 2017, (Machine Learning Blog).

      5. T. Rosen, Combatting denials using machine intelligence: how it works and why now is the time for it, 2015,

        • Denck J.
        • Landschütz W.
        • Nairz K.
        • et al.
        Automated billing code retrieval from MRI scanner log data.
        J Digit Imaging. 2019; https://doi.org/10.1007/s10278-019-00241-z
        • Atutxa A.
        • de Ilarraza A.D.
        • Gojenola K.
        • et al.
        Interpretable deep learning to map diagnostic texts to ICD-10 codes.
        Int J Med Inform. 2019; 129: 49-59https://doi.org/10.1016/j.ijmedinf.2019.05.015
        • Channin D.S.
        • Mongkolwat P.
        • Kleper V.
        • et al.
        The annotation and image mark-up project.
        Radiology. 2009; 253: 590-592https://doi.org/10.1148/radiol.2533090135
        • Gaonkar B.
        • Hovda D.
        • Martin N.
        • et al.
        Deep learning in the small sample size setting: cascaded feed forward neural networks for medical image segmentation.
        Medical imaging 2016: computer-aided diagnosis. 9785. International Society for Optics and Photonics, 2016: 97852I
        • Forsberg D.
        • Sjöblom E.
        • Sunshine J.L.
        Detection and labeling of vertebrae in MR images using deep learning with clinical annotations as training data.
        J Digit Imaging. 2017; 30: 406-412https://doi.org/10.1007/s10278-017-9945-x
        • Cheng R.
        • Roth H.R.
        • Lu L.
        • et al.
        Active appearance model and deep learning for more accurate prostate segmentation on MRI.
        Med Imaging 2016. 2016; 9784: 97842I
        • Klein S.
        • van der Heide U.A.
        • Lips I.M.
        • et al.
        Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information.
        Med Phys. 2008; 35: 1407-1417https://doi.org/10.1118/1.2842076
        • Philbrick K.A.
        • Weston A.D.
        • Akkus Z.
        • et al.
        RIL-contour: a medical imaging dataset annotation tool for and with deep learning.
        J Digit Imaging. 2019; : 1-11
        • Arbour K.C.
        • Anh Tuan L.
        • Rizvi H.
        • et al.
        ml-RECIST: machine learning to estimate RECIST in patients with NSCLC treated with PD-(L) 1 blockade.
        J Clin Oncol. 2019; 37: 9052
        • Huang C.
        • Clayton E.A.
        • Matyunina L.V.
        • et al.
        Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy.
        Scient Rep. 2018; 8: 16444
        • Xu Y.
        • Hosny A.
        • Zeleznik R.
        • et al.
        Deep learning predicts lung cancer treatment response from serial medical imaging.
        Clin Cancer Res. 2019; 25: 3266-3275
        • Gillies R.J.
        • Kinahan P.E.
        • Hricak H.
        Radiomics: images are more than pictures, they are data.
        Radiology. 2016; 278: 563-577https://doi.org/10.1148/radiol.2015151169
        • Grimm L.J.
        • Mazurowski M.A.
        Breast cancer radiogenomics: current status and future directions.
        Acad Radiol. 2020; 27: 39-46https://doi.org/10.1016/j.acra.2019.09.012
        • Kumar D.
        • Shafiee M.J.
        • Chung A.G.
        • et al.
        Discovery radiomics for computed tomography cancer detection.
        CoRR. 2015; abs/1509.00117
        • Yang L.
        • Yang J.
        • Zhou X.
        • et al.
        Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients.
        Eur Radiol. 2019; 29: 2196-2206https://doi.org/10.1007/s00330-018-5770-y
        • Kickingereder P.
        • Bonekamp D.
        • Nowosielski M.
        • et al.
        Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features.
        Radiology. 2016; 281: 907-918https://doi.org/10.1148/radiol.2016161382
        • Li Z.
        • Wang Y.
        • Yu J.
        • et al.
        Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma.
        Sci Rep. 2017; 7: 5467https://doi.org/10.1038/s41598-017-05848-2
        • Sotoudeh H.
        • Shafaat O.
        • Sotoudeh E.
        • et al.
        Artificial intelligence in the management of glioma; era of personal medicine.
        Front Oncol. 2019; 9: 768
        • Sarkiss C.A.
        • Germano I.M.
        Machine learning in neuro-oncology: can data analysis from 5,346 patients change decision making paradigms?.
        World Neurosurg. 2019;
      6. S1878-8750(19)30141-X
        • Nie D.
        • Lu J.
        • Zhang H.
        • et al.
        Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages.
        Scient Rep. 2019; 9: 1103
        • Sollini M.
        • Antunovic L.
        • Chiti A.
        • et al.
        Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics.
        Eur J Nucl Med Mol Imaging. 2019; : 1-17
        • Lee G.
        • Nho K.
        • Kang B.
        • et al.
        Predicting Alzheimer’s disease progression using multi-modal deep learning approach.
        Scient Rep. 2019; 9: 1952
        • Araujo F.H.
        • Silva R.R.
        • Medeiros F.N.
        • et al.
        Reverse image search for scientific data within and beyond the visible spectrum.
        Expert Syst Appl. 2018; 109: 35-48
        • Jing Y.
        • Liu D.
        • Kislyuk D.
        • et al.
        Visual search at Pinterest.
        Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’15. ACM, New York, NY, USA2015: 1889-1898https://doi.org/10.1145/2783258.2788621
        • Mamrosh J.L.
        • Moore D.D.
        Using Google reverse image search to decipher biological images.
        Curr Protocols Mol Biol. 2015; 111
      7. 19–13.
        • Pinho E.
        • Godinho T.
        • Valente F.
        • et al.
        A multimodal search engine for medical imaging studies.
        J Digit Imaging. 2017; 30: 39-48
        • Cao Y.
        • Steffey S.
        • He J.
        • Müller H.
        Medical image retrieval: a multimodal approach.
        Cancer Inf. 2014; 13: 125-136.
        • Müller H.
        • Michoux N.
        • Bandon D.
        • et al.
        A review of content-based image retrieval systems in medical applications — clinical benefits and future directions.
        Int J Med Inf. 2004; 73: 1-23
        • Char D.S.
        • Shah N.H.
        • Magnus D.
        Implementing machine learning in health care - addressing ethical challenges.
        N Engl J Med. 2018; 378: 981-983https://doi.org/10.1056/NEJMp1714229
        • Finlayson S.G.
        • Kohane I.S.
        • Beam A.L.
        Adversarial attacks against medical deep learning systems.
        CoRR. 2018; abs/1804.05296
        • Finlayson S.G.
        • Bowers J.D.
        • Ito J.
        • et al.
        Adversarial attacks on medical machine learning.
        Science. 2019; 363: 1287-1289https://doi.org/10.1126/science.aaw4399
        • Mirsky Y.
        • Mahler T.
        • Shelef I.
        • et al.
        CT-GAN: malicious tampering of 3D medical imagery using deep learning.
        CoRR. 2019; abs/1901.03597
      8. April 8
      9. W. Knight, The dark secret at the heart of AI, 2017,

      10. K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: visualising image classification models and saliency maps, 2014, arXiv:1312.6034.

        • Ribeiro M.T.
        • Singh S.
        • Guestrin C.
        ”why should i trust you?”: explaining the predictions of any classifier.
        Proceedings of the 22Nd ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’16. ACM, New York, NY, USA2016: 1135-1144https://doi.org/10.1145/2939672.2939778
        • Graham C.
        NHS cyber attack: Everything you need to know about ‘biggest ransomware’ offensive in history.
        Telegraph. 2017;
      11. 20 May
      12. C. Beek, McAfee researchers find poor security exposes medical data to cybercriminals, 2018,

        • Ghoneim A.
        • Muhammad G.
        • Amin S.U.
        • et al.
        Medical image forgery detection for smart healthcare.
        IEEE Commun Mag. 2018; 56: 33-37
        • Xu W.
        • Evans D.
        • Qi Y.
        Feature squeezing: Detecting adversarial examples in deep neural networks.
        CoRR. 2017; abs/1704.01155
        • Papernot N.
        • McDaniel P.
        • Wu X.
        • et al.
        Distillation as a defense to adversarial perturbations against deep neural networks.
        2016 IEEE symposium on security and privacy (SP). IEEE, 2016: 582-597
        • Chen H.
        • Gangaram V.
        • Shih G.
        Developing a more responsive radiology resident dashboard.
        J Digit Imaging. 2019; 32: 81-90
        • Tajmir S.H.
        • Alkasab T.K.
        Toward augmented radiologists: changes in radiology education in the era of machine learning and artificial intelligence.
        Acad Radiol. 2018; 25: 747-750
        • Awan O.
        • Dey C.
        • Salts H.
        • et al.
        Making learning fun: Gaming in radiology education.
        Acad Radiol. 2019; https://doi.org/10.1016/j.acra.2019.02.020
        • Zech J.R.
        • Badgeley M.A.
        • Liu M.
        • et al.
        Confounding variables can degrade generalization performance of radiological deep learning models.
        CoRR. 2018; abs/1807.00431
        • Hao Y.
        • He S.
        • Wang J.
        • et al.
        Dynamic difficulty adjustment of game AI by MCTS for the game Pac-Man.
        2010 sixth international conference on natural computation. 8. 2010: 3918-3922https://doi.org/10.1109/ICNC.2010.5584761
      13. R. Hunicke, V. Chapman, AI for dynamic difficulty adjustment in games, 2004, (Challenges in Game Artificial Intelligence AAAI Workshop).

        • Silva M.P.
        • Silva V.D.N.
        • Chaimowicz L.
        Dynamic difficulty adjustment through an adaptive AI.
        2015 14th Brazilian symposium on computer games and digital entertainment (SBGames). 2015: 173-182https://doi.org/10.1109/SBGames.2015.16
        • Xue S.
        • Wu M.
        • Kolen J.
        • et al.
        Dynamic difficulty adjustment for maximized engagement in digital games.
        Proceedings of the 26th international conference on world wide web companion. WWW ’17 Companion. International world wide web conferences steering committee, Republic and Canton of Geneva, Switzerland2017: 465-471https://doi.org/10.1145/3041021.3054170
        • Dias R.D.
        • Gupta A.
        • Yule S.J.
        Using machine learning to assess physician competence: a systematic review.
        Acad Med. 2019; 94: 427-439
      14. Accreditation Council for Graduate Medical Education and American Board of Radiology, The diagnostic radiology milestone project, 2015,

        • Collado-Mesa F.
        • Alvarez E.
        • Arheart K.
        The role of artificial intelligence in diagnostic radiology: a survey at a single radiology residency training program.
        J Am Coll Radiol. 2018; 15: 1753-1757https://doi.org/10.1016/j.jacr.2017.12.021
        • Gong B.
        • Nugent J.P.
        • Guest W.
        • et al.
        Influence of artificial intelligence on Canadian medical students’ preference for radiology specialty: a national survey study.
        Acad Radiol. 2019; 26: 566-577https://doi.org/10.1016/j.acra.2018.10.007
        • Purohit K.
        Growing interest in radiology despite AI fears.
        Acad Radiol. 2019; https://doi.org/10.1016/j.acra.2018.11.024
        • Balthazar P.
        • Tajmir S.H.
        • Ortiz D.A.
        • et al.
        The Artificial Intelligence Journal Club (#RADAIJC): a multi-institutional resident-driven web-based educational initiative.
        Acad Radiol. 2020; 27: 136-139https://doi.org/10.1016/j.acra.2019.10.005
        • Erickson B.J.
        Magician’s corner: how to start learning about deep learning.
        Radiology. 2019; 1: e190072https://doi.org/10.1148/ryai.2019190072
      15. B. Allen Jr., Democratizing AI for radiology, 2019, ACR DSI Blog.

        • Grayev A.
        Artificial intelligence in radiology: Resident recruitment help or hindrance?.
        Acad Radiol. 2019; https://doi.org/10.1016/j.acra.2019.01.005