Advertisement

Difference of DCE-MRI Parameters at Different Time Points and Their Predictive Value for Axillary Lymph Node Metastasis of Breast Cancer

Published:January 25, 2021DOI:https://doi.org/10.1016/j.acra.2021.01.013

      Rationale and Objectives

      To assess differences of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) parameters at different postcontrast time points (TPs), and to explore the predictive value of DCE-MRI parameters for axillary lymph node (ALN) metastasis of breast cancer.

      Materials and Methods

      A total of 107 breast cancer patients were included retrospectively, and 50 phases were collected on DCE-MRI for each patient. DCE-MRI parameters Ktrans, Kep, Ve, TTP, Peak, Washin, Washout, and AUC were extracted from the images at 67.8 seconds, 128.5 seconds, 189.2 seconds, 249.9 seconds, and 310.5 seconds (regard as TP1, 2, 3, 4, and 5). Wilcoxon signed rank test was used to compare DCE-MRI parameters at different postcontrast TPs. Logistic regression was performed to analyze the predictive value of DCE-MRI parameters for ALN metastasis of breast cancer, and receiver operating characteristic (ROC) curve was constructed to evaluate the predictive performance.

      Results

      The difference of DCE-MRI parameters between TP1, 2, 3, 4, and 5 was statistically significant (p < 0.01) in breast cancer. The TPs are considered as the optimal TPs when DCE-MRI parameters values reach the maximum. The optimal TPs of Ktrans, Kep, and Ve were respectively at TP2, TP2, and TP4 (Ktrans2, Kep2, and Ve4). The optimal TPs of TTP, Peak, and AUC were at TP5 (TTP5, Peak5, and AUC5). AUC5 showed the ability to predict ALN metastasis of breast cancer (area under ROC curve = 0.656, p < 0.05).

      Conclusions

      DCE-MRI parameters values were different at different postcontrast TPs. AUC5 may be an independent predictor of ALN metastasis in breast cancer.

      Key Words

      Abbreviations:

      DCE-MRI (dynamic contrast enhanced magnetic resonance imaging), TP (time point (DCE-MRI post-contrast time points)), ALN (axillary lymph node), ROC (receiver operating characteristic), AUC (area under ROC curve), SLNB (sentinel lymph node biopsy), AIF (arterial input function)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Weigel M.T.
        • Dowsett M.
        Current and emerging biomarkers in breast cancer: prognosis and prediction.
        Endocr Relat Cancer. 2010; https://doi.org/10.1677/ERC-10-0136
        • Curigliano G.
        • Burstein H.J.
        • P Winer E.
        • et al.
        De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017.
        Ann Oncol. 2019; https://doi.org/10.1093/annonc/mdy537
        • Lyman G.H.
        • Somerfield M.R.
        • Giuliano A.E.
        Sentinel lymph node biopsy for patients with early-stage breast cancer: 2016 American Society of Clinical Oncology Clinical Practice Guideline update summary.
        J Oncol Pract. 2017; https://doi.org/10.1200/JOP.2016.019992
        • Chatterjee A.
        • Serniak N.
        • Czerniecki B.J.
        Sentinel lymph node biopsy in breast cancer: a work in progress.
        Cancer J. 2015; https://doi.org/10.1097/PPO.0000000000000090
        • Yoshihara E.
        • Smeets A.
        • Laenen A.
        • et al.
        Predictors of axillary lymph node metastases in early breast cancer and their applicability in clinical practice.
        Breast. 2013; https://doi.org/10.1016/j.breast.2012.09.003
        • Cheng Z.
        • Wu Z.
        • Shi G.
        • et al.
        Discrimination between benign and malignant breast lesions using volumetric quantitative dynamic contrast-enhanced MR imaging.
        Eur Radiol. 2018; https://doi.org/10.1007/s00330-017-5050-2
        • Koo H.R.
        • Cho N.
        • Song I.C.
        • et al.
        Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers.
        J Magn Reson Imaging. 2012; https://doi.org/10.1002/jmri.23635
        • Drisis S.
        • Metens T.
        • Ignatiadis M.
        • et al.
        Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy.
        Eur Radiol. 2016; https://doi.org/10.1007/s00330-015-3948-0
        • Kim H.
        Variability in quantitative DCE-MRI: sources and solutions.
        J Nat Sci. 2018; 4: e484
        • Macura K.J.
        • Ouwerkerk R.
        • Jacobs M.A.
        • et al.
        Patterns of enhancement on breast MR images: interpretation and imaging pitfalls.
        Radiographics. 2007; https://doi.org/10.1148/rg.266065025
        • Romeo V.
        • Cavaliere C.
        • Imbriaco M.
        • et al.
        Tumor segmentation analysis at different post-contrast time points: a possible source of variability of quantitative DCE-MRI parameters in locally advanced breast cancer.
        Eur J Radiol. 2020; https://doi.org/10.1016/j.ejrad.2020.108907
        • Kang S.R.
        • Kim H.W.
        • Kim H.S.
        Evaluating the relationship between dynamic contrast-enhanced MRI (DCE-MRI) parameters and pathological characteristics in breast cancer.
        J Magn Reson Imaging. 2020; https://doi.org/10.1002/jmri.27241
        • Niu Q.
        • Jiang X.
        • Li Q.
        • et al.
        Texture features and pharmacokinetic parameters in differentiating benign and malignant breast lesions by dynamic contrast enhanced magnetic resonance imaging.
        Oncol Lett. 2018; https://doi.org/10.3892/ol.2018.9196
        • Türkbey B.
        • Thomasson D.
        • Pang Y.
        • et al.
        The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment.
        Diagn Interv Radiol. 2010; https://doi.org/10.4261/1305-3825.DIR.2537-08.1
        • Pinker K.
        • Helbich T.H.
        • Morris E.A.
        The potential of multiparametric MRI of the breast.
        Br J Radiol. 2017; https://doi.org/10.1259/bjr.20160715
        • El Khouli R.H.
        • Macura K.J.
        • Kamel I.R.
        • et al.
        3-T dynamic contrast-enhanced MRI of the breast: pharmacokinetic parameters versus conventional kinetic curve analysis.
        AJR Am J Roentgenol. 2011; https://doi.org/10.2214/AJR.10.4665
        • Tofts P.S.
        • Brix G.
        • Buckley D.L.
        • et al.
        Estimating kinetic parameters from dynamic contrast-enhanced T (1)-weighted MRI of a diffusable tracer: standardized quantities and symbols.
        J Magn Reson Imaging. 1999; https://doi.org/10.1002/(sici)1522-2586(199909)10:3≤223::aid-jmri2≥3.0.co;2-s
        • Turetschek K.
        • Roberts T.P.
        • Floyd E.
        • et al.
        Tumor microvascular characterization using ultrasmall superparamagnetic iron oxide particles (USPIO) in an experimental breast cancer model.
        J Magn Reson Imaging. 2001; https://doi.org/10.1002/jmri.1126
        • Banerjee I.
        • Malladi S.
        • Lee D.
        • et al.
        Assessing treatment response in triple-negative breast cancer from quantitative image analysis in perfusion magnetic resonance imaging.
        J Med Imaging (Bellingham). 2018; https://doi.org/10.1117/1.JMI.5.1.011008
        • Choi E.J.
        • Youk J.H.
        • Choi H.
        • et al.
        Dynamic contrast-enhanced and diffusion-weighted MRI of invasive breast cancer for the prediction of sentinel lymph node status.
        J Magn Reson Imaging. 2020; https://doi.org/10.1002/jmri.26865
        • Veronesi U.
        • Paganelli G.
        • Viale G.
        • et al.
        A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer.
        N Engl J Med. 2003; https://doi.org/10.1056/NEJMoa012782
        • Krag D.N.
        • Anderson S.J.
        • Julian T.B.
        • et al.
        Technical outcomes of sentinel-lymph-node resection and conventional axillary-lymph-node dissection in patients with clinically node-negative breast cancer: results from the NSABP B-32 randomised phase III trial.
        Lancet Oncol. 2007; https://doi.org/10.1016/S14702045(07)70278-4
        • Maguire A.
        • Brogi E.
        Sentinel lymph nodes for breast carcinoma: an update on current practice.
        Histopathology. 2016; https://doi.org/10.1111/his.12853
        • Wu C.
        • Pineda F.
        • Hormuth 2nd., D.A.
        • et al.
        Quantitative analysis of vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast tumors.
        Magn Reson Med. 2019; https://doi.org/10.1002/mrm.27529
        • Carriero A.
        • Di Credico A.
        • Mansour M.
        • et al.
        Maximum intensity projection analysis in magnetic resonance of the breast.
        J Exp Clin Cancer Res. 2002;
        • Dong X.
        • Chunrong Y.
        • Hongjun H.
        • et al.
        Differentiating the lymph node metastasis of breast cancer through dynamic contrast-enhanced magnetic resonance imaging.
        BJR Open. 2019; https://doi.org/10.1259/bjro.20180023
        • Liu M.
        • Mao N.
        • Ma H.
        • et al.
        Pharmacokinetic parameters and radiomics model based on dynamic contrast enhanced MRI for the preoperative prediction of sentinel lymph node metastasis in breast cancer.
        Cancer Imaging. 2020; https://doi.org/10.1186/s40644-020-00342-x
        • Liu F.
        • Wang M.
        • Li H.
        Role of perfusion parameters on DCE-MRI and ADC values on DWMRI for invasive ductal carcinoma at 3.0 Tesla.
        World J Surg Oncol. 2018; https://doi.org/10.1186/s12957-018-1538-8
        • Lee J.
        • Kim S.H.
        • Kang B.J.
        Pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: Perfusion metrics of dynamic contrast enhanced MRI.
        Sci Rep. 2018; https://doi.org/10.1038/s41598-018-27764-9
        • Nagasaka K.
        • Satake H.
        • Ishigaki S.
        • et al.
        Histogram analysis of quantitative pharmacokinetic parameters on DCE-MRI: correlations with prognostic factors and molecular subtypes in breast cancer.
        Breast Cancer. 2019; https://doi.org/10.1007/s12282-018-0899-8