T2 signal hyperintensities (WMHs) are readily visualized on brain scans of elderly
individuals. WMHs occur both in demented patients and in healthy elderly subjects.
The main risk factors associated with development of WMHs are older age and hypertension
(
1
). Vladimir Hachinski proposed the descriptive term “leukoaraiosis” to refer to these
changes, based on the Greek for “white matter rarefaction” (
2
). The origin and pathophysiology of WMHs are not fully understood. Histopathological-imaging
correlational studies in post-mortem brains have shown that WMHs reflect heterogeneous
histological changes including myelin pallor, myelin loss, axonal loss, gliosis and
incomplete white matter infarction (
3
,
4
). Some of these histological changes are thought to be ischemic in origin, but non-vascular
mechanisms such as CSF transudation through discontinuities of the ependyma into the
brain interstitium are also important. Brain pathological examination of Alzheimer's
disease (AD) cases have demonstrated deep white matter rarefaction with partial loss
of myelin and axons, referred to as selective incomplete WM infarction, and are thought
to result from non-amyloid arteriolosclerosis associated with hypoperfusion (
5
). Accordingly, increased volume or higher severity of PWMHs are found in patients
with AD dementia (
6
,
7
).WMHs in conjunction with lacunar brain infarctions are also highly prevalent in
subcortical ischemic vascular disease (SIVD), the most common type of vascular dementia
(
8
).To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Academic RadiologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
REFERENCES
- Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study.Stroke. 1996; 27: 1274-1282
- Leuko-araiosis.Arch Neurol. 1987; 44: 21-23
- Pathologic correlates of incidental MRI white matter signal hyperintensities.Neurology. 1993; 43: 1683-1689
- Pathophysiologic mechanisms in the development of age-related white matter changes of the brain.Dement Geriatr Cogn Disord. 1998; 9 Suppl 1: 2-5
- White matter changes in dementia of Alzheimer's type. Biochemical and neuropathological correlates.J Neurol. 1988; 111: 1425-1439
- MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging.AJR. 1987; 149: 351-356
- White matter hyperintensities are a core feature of Alzheimer's disease: Evidence from the dominantly inherited Alzheimer network.Ann Neurol. 2016; 79: 929-939
- Subcortical ischaemic vascular dementia.Lancet Neurol. 2002; 1: 426-436
- Periventricular venous collagenosis: association with leukoaraiosis.Radiology. 1995; 194: 469-476
- Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study.Ann Neurol. 2000; 47: 145-151
- The association between cognitive function and white matter lesion location in older adults: a systematic review.BMC neurology. 2012; 12: 126
- Lesion location and cognitive impact of cerebral small vessel disease.Clinical science (London, England: 1979). 2017; 131: 715-728
- White matter changes on CT and MRI: an overview of visual rating scales. European Task Force on Age-Related White Matter Changes.Eur Neurol. 1998; 39: 80-89
- Predicting Fazekas scores from automatic segmentations of white matter signal abnormalities.Aging. 2020; 12: 894-901
- Bilateral Distance Partition of Periventricular and Deep White Matter Hyperintensities: Performance of the Method in the Aging Brain.Acad Radiol. 2020; https://doi.org/10.1016/j.acra.2020.07.039
- The Alzheimer's disease neuroimaging initiative: progress report and future plans.J Alzheimers Dis. 2010; 6 (.e7): 202-211
- Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer disease in the community.Arch Neurol. 2012; 69: 1621-1627
Luo W AC, Albright J. The NeuroQuant Normative Database. Comparing Individual Brain Structures. In: Cortechs labs I, editor. San Diego, CA USA.
Article info
Publication history
Published online: June 05, 2021
Accepted:
April 24,
2021
Received:
April 23,
2021
Identification
Copyright
© 2021 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.