Complex Relationship Between Artificial Intelligence and CT Radiation Dose

Published:November 24, 2021DOI:https://doi.org/10.1016/j.acra.2021.10.024
      Concerns over need for CT radiation dose optimization and reduction led to improved scanner efficiency and introduction of several reconstruction techniques and image processing-based software. The latest technologies use artificial intelligence (AI) for CT dose optimization and image quality improvement. While CT dose optimization has and can benefit from AI, variations in scanner technologies, reconstruction methods, and scan protocols can lead to substantial variations in radiation doses and image quality across and within different scanners. These variations in turn can influence performance of AI algorithms being deployed for tasks such as detection, segmentation, characterization, and quantification. We review the complex relationship between AI and CT radiation dose.
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Accessed from: https://www.acrdsi.org/. Accessed at: July 1, 2021.

        • Bosch de Basea M
        • Salotti JA
        • Pearce MS
        • et al.
        Trends and patterns in the use of computed tomography in children and young adults in Catalonia - results from the EPI-CT study.
        Pediatr Radiol. 2016; 46: 119-129https://doi.org/10.1007/s00247-015-3434-5
        • Brenner DJ
        • Hall EJ
        Computed tomography–an increasing source of radiation exposure.
        N Engl J Med. 2007; 357: 2277-2284https://doi.org/10.1056/NEJMra072149
        • McCollough CH
        • Primak AN
        • Braun N
        • et al.
        Strategies for reducing radiation dose in CT.
        Radiol Clin North Am. 2009; 47: 27-40https://doi.org/10.1016/j.rcl.2008.10.006
        • Kalra MK
        • Maher MM
        • Toth TL
        • et al.
        Strategies for CT radiation dose optimization.
        Radiology. 2004; 230: 619-628https://doi.org/10.1148/radiol.2303021726
        • Kalra MK
        • Woisetschläger M
        • Dahlström N
        • et al.
        Radiation dose reduction with sinogram affirmed iterative reconstruction technique for abdominal computed tomography.
        J Comput Assist Tomogr. 2012; 36: 339-346https://doi.org/10.1097/RCT.0b013e31825586c0
        • Shan H
        • Padole A
        • Homayounieh F
        • et al.
        Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction.
        Nat Mach Intell. 2019; 1: 269-276https://doi.org/10.1038/s42256-019-0057-9
        • Yedder HB
        • Cardoen B
        • Hamarneh G.
        Deep learning for biomedical image reconstruction: a survey.
        Artif Intell Rev. 2021; 54: 215-251
        • Chartrand G
        • Cheng PM
        • Vorontsov E
        • et al.
        Deep learning: A primer for radiologists.
        Radiographics. 2017; 37: 2113-2131https://doi.org/10.1148/rg.2017170077
        • McCollough CH
        • Bruesewitz MR
        • Kofler Jr., JM
        CT dose reduction and dose management tools: overview of available options.
        Radiographics. 2006; 26: 503-512https://doi.org/10.1148/rg.262055138
        • Kalra MK
        • Dang P
        • Singh S
        • et al.
        In-plane shielding for CT: effect of off-centering, automatic exposure control and shield-to-surface distance.
        Korean J Radiol. 2009; 10: 156-163https://doi.org/10.3348/kjr.2009.10.2.156
        • Toth T
        • Ge Z.
        Influence of patient centering on CT dose and image noise.
        Medical Physics. 2007; 34: 3093-3101
        • Sharma P
        • Suehling M
        • Flohr T
        • et al.
        Artificial intelligence in diagnostic imaging: status quo, challenges, and future opportunities.
        J Thorac Imaging. 2020; 35: S11-S16https://doi.org/10.1097/RTI.0000000000000499
        • Saltybaeva N
        • Schmidt B
        • Wimmer A
        • et al.
        Precise and automatic patient positioning in computed tomography: avatar modeling of the patient surface using a 3-dimensional camera.
        Invest Radiol. 2018; 53: 641-646https://doi.org/10.1097/RLI.0000000000000482
        • Gang R
        • Budde RPJ
        • Dijkshoorn ML
        • et al.
        Accuracy of automated patient positioning in CT using a 3D camera for body contour detection.
        Eur Radiol. 2019; 29: 2079-2088https://doi.org/10.1007/s00330-018-5745-z
        • Gang Y
        • Chen X
        • Li H
        • et al.
        A comparison between manual and artificial intelligence-based automatic positioning in CT imaging for COVID-19 patients.
        Eur Radiol. 2021 Aug; 31: 6049-6058
        • Jiang S
        • Jiang Z
        • Luo LH
        • et al.
        Health protection of CT radiographers during the outbreak of COVID-19: application of automatic positioning technology for relocatable CT in the fang cang hospital.
        Front Med (Lausanne). 2021; 8659520
        • McCollough CH
        • Leng S.
        Use of artificial intelligence in computed tomography dose optimisation.
        Ann ICRP. 2020; 49: 113-125https://doi.org/10.1177/0146645320940827
        • Singh S
        • Kalra MK
        • Shenoy-Bhangle AS
        • et al.
        Radiation dose reduction with hybrid iterative reconstruction for pediatric CT.
        Radiology. 2012; 263: 537-546https://doi.org/10.1148/radiol.12110268
        • Khawaja RD
        • Singh S
        • Otrakji A
        • et al.
        Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms.
        Pediatr Radiol. 2015; 45: 1046-1055https://doi.org/10.1007/s00247-014-3235-2
        • Yedder HB
        • Cardoen B
        • Hamarneh G
        Deep learning for biomedical image reconstruction: a survey.
        Artif Intell Rev. 2021; 54: 215-251
        • Wang G.
        • Ye J.C.
        • De Man B.
        Deep learning for tomographic image reconstruction.
        Nat Mach Intell. 2020; 2: 737-748https://doi.org/10.1038/s42256-020-00273-z
        • Zhang Y.
        • Lv T.
        • Ge R.
        • et al.
        CD-Net: comprehensive domain network with spectral complementary for DECT sparse-view reconstruction.
        IEEE Trans Comput Imaging. 2021; 7: 436-447
        • Yin X
        • Zhao Q
        • Liu J
        • et al.
        Domain progressive 3D residual convolution network to improve low-dose CT imaging.
        IEEE Trans Med Imaging. 2019; 38: 2903-2913https://doi.org/10.1109/TMI.2019.2917258
        • Zhang Y
        • Hu D
        • Zhao Q
        • et al.
        CLEAR: comprehensive learning enabled adversarial reconstruction for subtle structure enhanced low-dose CT imaging.
        IEEE Trans Med Imaging. 2021; https://doi.org/10.1109/TMI.2021.3097808
        • Hu D.
        • Zhang Y.
        • Liu J.
        • et al.
        SPECIAL: single-shot projection error correction integrated adversarial learning for limited-angle CT.
        IEEE Transactions on Computational Imaging. 2021; 7: 734-746
        • Zhang Z
        • Seeram E
        The use of artificial intelligence in computed tomography image reconstruction - A literature review.
        J Med Imaging Radiat Sci. 2020; 51: 671-677https://doi.org/10.1016/j.jmir.2020.09.001
        • Willemink MJ
        • Noël PB
        The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence.
        Eur Radiol. 2019; 29: 2185-2195https://doi.org/10.1007/s00330-018-5810-7
        • Kambadakone A
        Artificial intelligence and CT image reconstruction: potential of a new era in radiation dose reduction.
        J Am Coll Radiol. 2020; 17: 649-651https://doi.org/10.1016/j.jacr.2019.12.025
        • Yi X
        • Walia E
        • Babyn P
        Generative adversarial network in medical imaging: a review.
        Med Image Anal. 2019; 58101552https://doi.org/10.1016/j.media.2019.101552
        • Greffier J
        • Hamard A
        • Pereira F
        • et al.
        Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study.
        Eur Radiol. 2020; 30: 3951-3959https://doi.org/10.1007/s00330-020-06724-w
        • Kim JH
        • Yoon HJ
        • Lee E
        • et al.
        Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise.
        Korean J Radiol. 2021; 22: 131-138https://doi.org/10.3348/kjr.2020.0116
        • Lee JE
        • Choi SY
        • Hwang JA
        • et al.
        The potential for reduced radiation dose from deep learning-based CT image reconstruction: A comparison with filtered back projection and hybrid iterative reconstruction using a phantom.
        Medicine (Baltimore). 2021; 100: e25814https://doi.org/10.1097/MD.0000000000025814
        • Higaki T
        • Nakamura Y
        • Zhou J
        • et al.
        Deep learning reconstruction at CT: phantom study of the image characteristics.
        Acad Radiol. 2020; 27: 82-87https://doi.org/10.1016/j.acra.2019.09.008
        • Bernard A
        • Comby PO
        • Lemogne B
        • et al.
        Deep learning reconstruction versus iterative reconstruction for cardiac CT angiography in a stroke imaging protocol: reduced radiation dose and improved image quality.
        Quant Imaging Med Surg. 2021; 11: 392-401https://doi.org/10.21037/qims-20-626
        • Singh R
        • Digumarthy SR
        • Muse VV
        • et al.
        Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT.
        AJR Am J Roentgenol. 2020; 214: 566-573https://doi.org/10.2214/AJR.19.21809
        • Akagi M
        • Nakamura Y
        • Higaki T
        • et al.
        Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT.
        Eur Radiol. 2019; 29: 6163-6171https://doi.org/10.1007/s00330-019-06170-3
        • Nakamura Y
        • Narita K
        • Higaki T
        • et al.
        Diagnostic value of deep learning reconstruction for radiation dose reduction at abdominal ultra-high-resolution CT.
        Eur Radiol. 2021; 31: 4700-4709https://doi.org/10.1007/s00330-020-07566-2
        • Zeng L
        • Xu X
        • Zeng W
        • et al.
        Deep learning trained algorithm maintains the quality of half-dose contrast-enhanced liver computed tomography images: Comparison with hybrid iterative reconstruction: Study for the application of deep learning noise reduction technology in low dose.
        Eur J Radiol. 2021; 135109487https://doi.org/10.1016/j.ejrad.2020.109487
        • Wang X
        • Zheng F
        • Xiao R
        • et al.
        Comparison of image quality and lesion diagnosis in abdominopelvic unenhanced CT between reduced-dose CT using deep learning post-processing and standard-dose CT using iterative reconstruction: a prospective study.
        Eur J Radiol. 2021; 139109735https://doi.org/10.1016/j.ejrad.2021.109735
        • Singh R
        • Wu W
        • Wang G
        • et al.
        Artificial intelligence in image reconstruction: The change is here.
        Phys Med. 2020; 79: 113-125https://doi.org/10.1016/j.ejmp.2020.11.012
        • Wang G
        • Ye JC
        • Mueller K
        • et al.
        Image Reconstruction is a New Frontier of Machine Learning.
        IEEE Trans Med Imaging. 2018; 37: 1289-1296https://doi.org/10.1109/TMI.2018.2833635
        • Cao L
        • Liu X
        • Li J
        • et al.
        A study of using a deep learning image reconstruction to improve the image quality of extremely low-dose contrast-enhanced abdominal CT for patients with hepatic lesions.
        Br J Radiol. 2021; 9420201086https://doi.org/10.1259/bjr.20201086
        • Kalra MK
        • Maher MM
        • Blake MA
        • et al.
        Detection and characterization of lesions on low-radiation-dose abdominal CT images postprocessed with noise reduction filters.
        Radiology. 2004; 232: 791-797https://doi.org/10.1148/radiol.2323031563
      2. FDA Cleared AI Algorithms. American College of Radiology Data Science Institute. Accessed from: https://models.acrdsi.org/ Accessed on May 10, 2021]

        • Lim WH
        • Choi YH
        • Park JE
        • et al.
        Application of vendor-neutral iterative reconstruction technique to pediatric abdominal computed tomography.
        Korean J Radiol. 2019; 20: 1358-1367https://doi.org/10.3348/kjr.2018.0715
        • Rozema R
        • Kruitbosch HT
        • van Minnen B
        • et al.
        Iterative reconstruction and deep learning algorithms for enabling low-dose computed tomography in midfacial trauma [published online ahead of print, 2020 Dec 8].
        Oral Surg Oral Med Oral Pathol Oral Radiol. 2020; : 4522https://doi.org/10.1016/j.oooo.2020.11.018
        • Tian SF
        • Liu AL
        • Liu JH
        • et al.
        Potential value of the PixelShine deep learning algorithm for increasing quality of 70 kVp+ASiR-V reconstruction pelvic arterial phase CT images.
        Jpn J Radiol. 2019; 37: 186-190https://doi.org/10.1007/s11604-018-0798-0
        • Larson DB
        • Boland GW
        Imaging quality control in the era of artificial intelligence.
        J Am Coll Radiol. 2019; 16: 1259-1266https://doi.org/10.1016/j.jacr.2019.05.048
        • Lyons L
        • Wardle N.
        Statistical issues in searches for new phenomena in high energy physics.
        J. Phys. G: Nucl. Part. Phys. 2018; 45033001
        • Hsieh J.
        Computed Tomography: Principles, Design, Artifacts, and Recent Advances.
        Third Edition. SPIE, 2015 (Chapter 5.2)
        • von Falck C
        • Galanski M
        • Shin HO
        Informatics in radiology: sliding-thin-slab averaging for improved depiction of low-contrast lesions with radiation dose savings at thin-section CT.
        Radiographics. 2010; 30: 317-326https://doi.org/10.1148/rg.302096007
        • Schindera ST
        • Odedra D
        • Mercer D
        • et al.
        Hybrid iterative reconstruction technique for abdominal CT protocols in obese patients: assessment of image quality, radiation dose, and low-contrast detectability in a phantom.
        AJR Am J Roentgenol. 2014; 202: W146-W152https://doi.org/10.2214/AJR.12.10513
        • Mileto A
        • Zamora DA
        • Alessio AM
        • et al.
        CT detectability of small low-contrast hypoattenuating focal lesions: iterative reconstructions versus filtered back projection.
        Radiology. 2018; 289: 443-454https://doi.org/10.1148/radiol.2018180137
        • Jensen CT
        • Wagner-Bartak NA
        • Vu LN
        • et al.
        Detection of colorectal hepatic metastases is superior at standard radiation Dose CT versus reduced dose CT.
        Radiology. 2019; 290: 400-409https://doi.org/10.1148/radiol.2018181657
        • Herts BR
        • Schreiner A
        • Dong F
        • et al.
        Effect of obesity on ability to lower exposure for detection of low-attenuation liver lesions.
        J Appl Clin Med Phys. 2021; 22: 138-144https://doi.org/10.1002/acm2.13149
        • Omigbodun A
        • Vaishnav JY
        • Hsieh SS.
        Rapid measurement of the low contrast detectability of CT scanners.
        Med Phys. 2021; 48: 1054-1063https://doi.org/10.1002/mp.14657
        • Yu L
        • Leng S
        • Chen L
        • et al.
        Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: impact of radiation dose and reconstruction algorithms.
        Med Phys. 2013; 40041908https://doi.org/10.1118/1.4794498
        • Sidky EY
        • Phillips JP
        • Zhou W
        • et al.
        A signal detection model for quantifying overregularization in nonlinear image reconstruction [published online ahead of print, 2021 Jun 25].
        Med Phys. 2021; https://doi.org/10.1002/mp.14703
        • Jensen CT
        • Liu X
        • Tamm EP
        • et al.
        Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience.
        AJR Am J Roentgenol. 2020; 215: 50-57https://doi.org/10.2214/AJR.19.22332
        • Brady SL
        • Trout AT
        • Somasundaram E
        • et al.
        Improving image quality and reducing radiation dose for pediatric CT by using deep learning reconstruction.
        Radiology. 2021; 298: 180-188https://doi.org/10.1148/radiol.2020202317
        • Emaminejad N
        • Wahi-Anwar MW
        • Kim GHJ
        • et al.
        Reproducibility of lung nodule radiomic features: multivariable and univariable investigations that account for interactions between CT acquisition and reconstruction parameters.
        Med Phys. 2021; 48: 2906-2919https://doi.org/10.1002/mp.14830
        • Schwyzer M
        • Martini K
        • Skawran S
        • et al.
        Pneumonia detection in chest X-Ray dose-equivalent CT: impact of dose reduction on detectability by artificial intelligence.
        Acad Radiol. 2020; https://doi.org/10.1016/j.acra.2020.05.031
        • Fu B
        • Wang G
        • Wu M
        • et al.
        Influence of CT effective dose and convolution kernel on the detection of pulmonary nodules in different artificial intelligence software systems: a phantom study.
        Eur J Radiol. 2020; 126108928https://doi.org/10.1016/j.ejrad.2020.108928
        • Su D
        • Feng L
        • Jiang Y
        • et al.
        Effect of scanning and reconstruction parameters on three dimensional volume and CT value measurement of pulmonary nodules: a phantom study.
        Zhongguo Fei Ai Za Zhi. 2017; 20: 562-567https://doi.org/10.3779/j.issn.1009-3419.2017.08.11
        • Gierada DS
        • Pilgram TK
        • Whiting BR
        • et al.
        Comparison of standard- and low-radiation-dose CT for quantification of emphysema.
        AJR Am J Roentgenol. 2007; 188: 42-47https://doi.org/10.2214/AJR.05.1498
        • Autrusseau PA
        • Labani A
        • De Marini P
        • et al.
        Radiomics in the evaluation of lung nodules: Intrapatient concordance between full-dose and ultra-low-dose chest computed tomography.
        Diagn Interv Imaging. 2021; 102: 233-239https://doi.org/10.1016/j.diii.2021.01.010
        • Guo J
        • Wang C
        • Xu X
        • et al.
        DeepLN: an artificial intelligence-based automated system for lung cancer screening.
        Ann Transl Med. 2020; 8: 1126https://doi.org/10.21037/atm-20-4461
        • Wan YL
        • Wu PW
        • Huang PC
        • et al.
        The use of artificial intelligence in the differentiation of malignant and benign lung nodules on computed tomograms proven by surgical pathology.
        Cancers (Basel). 2020; 12: 2211https://doi.org/10.3390/cancers12082211
        • Cui S
        • Ming S
        • Lin Y
        • et al.
        Development and clinical application of deep learning model for lung nodules screening on CT images.
        Sci Rep. 2020; 10: 13657https://doi.org/10.1038/s41598-020-70629-3
        • Hsu YC
        • Tsai YH
        • Weng HH
        • et al.
        Artificial neural networks improve LDCT lung cancer screening: a comparative validation study.
        BMC Cancer. 2020; 20: 1023https://doi.org/10.1186/s12885-020-07465-1
        • Ozdemir O
        • Russell RL
        • Berlin AA
        A 3D probabilistic deep learning system for detection and diagnosis of lung cancer using low-dose CT scans.
        IEEE Trans Med Imaging. 2020; 39: 1419-1429https://doi.org/10.1109/TMI.2019.2947595
        • Gieraerts C
        • Dangis A
        • Janssen L
        • et al.
        Prognostic value and reproducibility of AI-assisted analysis of lung involvement in COVID-19 on low-dose submillisievert chest CT: sample size implications for clinical trials.
        Radiol Cardiothorac Imaging. 2020; 2 (Published 2020 Oct 22)e200441https://doi.org/10.1148/ryct.2020200441
        • Muehlematter UJ
        • Daniore P
        • Vokinger KN.
        Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015-20): a comparative analysis.
        Lancet Digit Health. 2021; 3: e195-e203https://doi.org/10.1016/S2589-7500(20)30292-2
        • Wu E
        • Wu K
        • Daneshjou R
        • et al.
        How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals.
        Nat Med. 2021; 27: 582-584https://doi.org/10.1038/s41591-021-01312-x
        • Roberts M
        • Driggs D
        • Thorpe M
        • et al.
        Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans.
        Nature Machine Intelligence. 2021; 3: 199-217https://doi.org/10.1038/s42256-021-00307-0
      3. Dreyer KJ, Allen B, Wald C. Real-World Surveillance of FDA-Cleared Artificial Intelligence Models: Rationale and Logistics [published online ahead of print, 2021 Oct 2]. J Am Coll Radiol. 2021;S1546-1440(21)00733-X. doi:10.1016/j.jacr.2021.06.025.

        • Choy G
        • Khalilzadeh O
        • Michalski M
        • et al.
        Current applications and future impact of machine learning in radiology.
        Radiology. 2018; 288: 318-328https://doi.org/10.1148/radiol.2018171820
        • Lee JH
        • Grant BR
        • Chung JH
        • et al.
        Assessment of diagnostic image quality of computed tomography (CT) images of the lung using deep learning.
        Proc. SPIE Medical Imaging. 2018; 105731https://doi.org/10.1117/12.2292070
        • Götz TI
        • Schmidkonz C
        • Chen S
        • et al.
        A deep learning approach to radiation dose estimation.
        Phys Med Biol. 2020; 65035007https://doi.org/10.1088/1361-6560/ab65dc
        • Peng Z
        • Fang X
        • Yan P
        • et al.
        A method of rapid quantification of patient-specific organ doses for CT using deep-learning-based multi-organ segmentation and GPU-accelerated Monte Carlo dose computing.
        Med Phys. 2020; 47: 2526-2536https://doi.org/10.1002/mp.14131
        • Rampado O
        • Gianusso L
        • Nava CR
        • et al.
        Analysis of a CT patient dose database with an unsupervised clustering approach.
        Phys Med. 2019; 60: 91-99https://doi.org/10.1016/j.ejmp.2019.03.015
        • Meineke A
        • Rubbert C
        • Sawicki LM
        • et al.
        Potential of a machine-learning model for dose optimization in CT quality assurance.
        Eur Radiol. 2019; 29: 3705-3713https://doi.org/10.1007/s00330-019-6013-6
        • Parakh A
        • Cao J
        • Pierce TT
        • et al.
        Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations.
        Eur Radiol. 2021; https://doi.org/10.1007/s00330-021-07952-4