Rationale and Objectives
Materials and Methods
Results
Conclusion
Key Words
Abbreviations:
OSA (obstructive sleep apnea), MRI (magnetic resonance imaging), MR (magnetic resonance), DL (deep learning), CNN (convolutional neural network), ROI (region of interest), V1 (voxel-weighted at max fat pad intensity), V2 (voxel-weighted at 99th percentile fat pad intensity)Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Academic RadiologyREFERENCES
- Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis.Lancet Respir Med. 2019; 7: 687-698https://doi.org/10.1016/s2213-2600(19)30198-5
- Adult obstructive sleep apnea.Chest. 2007; 132: 325-337https://doi.org/10.1378/chest.07-0040
- Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging.Am J Respir Crit Care Med. 2003; 168: 522-530https://doi.org/10.1164/rccm.200208-866oc
- Effect of weight loss on upper airway anatomy and the apnea–Hypopnea index. The importance of tongue fat.Am J Respir Crit Care Med. 2020; 201: 718-727https://doi.org/10.1164/rccm.201903-0692oc
- Tongue fat and its relationship to obstructive sleep apnea.Sleep. 2014; 37: 1639-1648https://doi.org/10.5665/sleep.4072
- Deep learning.Nature. 2015; 521: 436-444https://doi.org/10.1038/nature14539
- Deep MRI brain extraction: a 3D convolutional neural network for skull stripping.NeuroImage. 2016; 129: 460-469https://doi.org/10.1016/j.neuroimage.2016.01.024
- Brain tumor segmentation with deep neural networks.Med Image Anal. 2017; 35: 18-31https://doi.org/10.1016/j.media.2016.05.004
- Upper airway segmentation based on the attention mechanism of weak feature regions.IEEE Access. 2021; 9: 95372-95381https://doi.org/10.1109/access.2021.3094032
- Deep learning based airway segmentation using key point prediction.Appl Sci. 2021; 11: 3501https://doi.org/10.3390/app11083501
- Three-dimensional segmentation of the upper airway using cone beam CT: a systematic review.Dentomaxillofac Radiol. 2012; 41: 276-284https://doi.org/10.1259/dmfr/79433138
- Automatic MRI segmentation of para-pharyngeal fat pads using interactive visual feature space analysis for classification.BMC Med Imaging. 2017; 17https://doi.org/10.1186/s12880-017- 0179-7
- Pharynx segmentation from MRI data for analysis of sleep related disorders.Adv Vis Comput. 2013; : 20-29https://doi.org/10.1007/978-3-642-41914-0_3
- Automatic upper airway segmentation in static and dynamic MRI via anatomy-guided Convolutional Neural Networks.Med Phys. 2021; 49: 324-342https://doi.org/10.1002/mp.15345
Doshi J, Erus G, Habes M, et al. DeepMRSeg: a convolutional deep neural network for anatomy and abnormality segmentation on MR images. arXiv. Preprint posted online July 3, 2019. Available at: https://arxiv.org/abs/1907.02110. Accessed 01 Mar 2022.
- U-Net: convolutional networks for biomedical image segmentation.Lect Notes Comput Sci. 2015; : 234-241https://doi.org/10.1007/978-3-319-24574-4_28
- Deep residual learning for image recognition.in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016https://doi.org/10.1109/cvpr.2016.90
Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning. arXiv. Preprint posted online February 23, 2016. Available at: https://arxiv.org/abs/1602.07261. Accessed 01 Mar 2022.
- Simultaneous estimation of tongue volume and fat fraction using ideal-FSE.J Magn Reson Imaging. 2008; 28: 504-508https://doi.org/10.1002/jmri.21431
- Statistical methods for assessing agreement between two methods of clinical measurement.Lancet. 1986; 327: 307-310https://doi.org/10.1016/s0140-6736(86)90837-8
- Statistical power analysis for the behavioral sciences.Psychology Press, New York, NJ2009
- Interrater reliability: the kappa statistic.Biochem Med (Zagreb). 2012; 22: 276-282
- Sleep apnea is an anatomic disorder.Am J Respir Crit Care Med. 2003; 168: 270-271https://doi.org/10.1164/rccm.2305014