Advertisement

Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity

      Rationale and Objectives

      To investigate the impact of a prototypical deep learning–based super-resolution reconstruction algorithm tailored to partial Fourier acquisitions on acquisition time and image quality for abdominal T1-weighted volume-interpolated breath-hold examination (VIBESR) at 3 Tesla. The standard T1-weighted images were used as the reference standard (VIBESD).

      Materials and Methods

      Patients with diverse abdominal pathologies, who underwent a clinically indicated contrast-enhanced abdominal VIBE magnetic resonance imaging at 3T between March and June 2021 were retrospectively included. Following the acquisition of the standard VIBESD sequences, additional images for the non-contrast, dynamic contrast-enhanced and post-contrast T1-weighted VIBE acquisition were retrospectively reconstructed using the same raw data and employing a prototypical deep learning-based super-resolution reconstruction algorithm. The algorithm was designed to enhance edge sharpness by avoiding conventional k-space filtering and to perform a partial Fourier reconstruction in the slice phase-encoding direction for a predefined asymmetric sampling ratio. In the retrospective reconstruction, the asymmetric sampling was realized by omitting acquired samples at the end of the acquisition and therefore corresponding to a shorter acquisition. Four radiologists independently analyzed the image datasets (VIBESR and VIBESD) in a blinded manner. Outcome measures were: sharpness of abdominal organs, sharpness of vessels, image contrast, noise, hepatic lesion conspicuity and size, overall image quality and diagnostic confidence. These parameters were statistically compared and interrater reliability was computed using Fleiss’ Kappa and intraclass correlation coefficient (ICC). Finally, the rate of detection of hepatic lesions was documented and was statistically compared using the paired Wilcoxon test.

      Results

      A total of 32 patients aged 59 ± 16 years (23 men (72%), 9 women (28%)) were included. For VIBESR, breath-hold time was significantly reduced by approximately 13.6% (VIBESR 11.9 ± 1.2 seconds vs. VIBESD: 13.9 ± 1.4 seconds, p < 0.001). All readers rated sharpness of abdominal organs, sharpness of vessels to be superior in images with VIBESR (p values ranged between p = 0.005 and p < 0.001). Despite reduction of acquisition time, image contrast, noise, overall image quality and diagnostic confidence were not compromised, as there was no evidence of a difference between VIBESR and VIBESD (p > 0.05). The inter-reader agreement was substantial with a Fleiss’ Kappa of >0.7 in all contrast phases. A total of 13 hepatic lesions were analyzed. The four readers observed a superior lesion conspicuity in VIBESR than in VIBESD (p values ranged between p = 0.046 and p < 0.001). In terms of lesion size, there was no significant difference between VIBESD and VIBESR for all readers. Finally, there was an excellent inter-reader agreement regarding lesion size (ICC > 0.9). For all readers, no statistically significant difference was observed regarding detection of hepatic lesions between VIBESD and VIBESR.

      Conclusion

      The deep learning-based super-resolution reconstruction with partial Fourier in the slice phase-encoding direction enabled a reduction of breath-hold time and improved image sharpness and lesion conspicuity in T1-weighted gradient echo sequences in abdominal magnetic resonance imaging at 3 Tesla. Faster acquisition time without compromising image quality or diagnostic confidence was possible by using this deep learning-based reconstruction technique.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Grande FD
        • Guggenberger R
        • Fritz J
        Rapid musculoskeletal MRI in 2021: value and optimized use of widely accessible techniques.
        Am J Roentgenol. 2021; 216: 704-717
        • Markl M
        • Leupold J
        Gradient echo imaging.
        J Magn Reson Imaging. 2012; 35: 1274-1289
        • Rofsky NM
        • Lee VS
        • Laub G
        • et al.
        Abdominal MR imaging with a volumetric interpolated breath-hold examination.
        Radiology. 1999; 212: 876-884
        • Yoon JH
        • Nickel MD
        • Peeters JM
        • et al.
        Rapid imaging: recent advances in abdominal MRI for reducing acquisition time and its clinical applications.
        Korean J Radiol. 2019; 20: 1597-1615
        • Mitchell D
        • Cohen M
        MRI principles.
        Saunders. Elsevier, Philadelphia, PA2004
        • Weiss J
        • Notohamiprodjo M
        • Taron J
        • et al.
        Continuous hepatic arterial multiphase magnetic resonance imaging during free-breathing.
        Invest Radiol. 2018; 53: 596-601
        • Almansour H
        • Gassenmaier S
        • Nickel D
        • et al.
        Deep learning–based superresolution reconstruction for upper abdominal magnetic resonance imaging: an analysis of image quality, diagnostic confidence, and lesion conspicuity.
        Invest Radiol. 2021; 56: 509-516
        • Afat S
        • Wessling D
        • Afat C
        • et al.
        Analysis of a deep learning-based superresolution algorithm tailored to partial fourier gradient echo sequences of the abdomen at 1.5 T: reduction of breath-hold time and improvement of image quality.
        Invest Radiol. 2021; 57: 157-162
        • Vogt FM
        • Antoch G
        • Hunold P
        • et al.
        Parallel acquisition techniques for accelerated volumetric interpolated breath-hold examination magnetic resonance imaging of the upper abdomen: assessment of image quality and lesion conspicuity.
        J Magn Reson Imaging. 2005; 21: 376-382
        • Hammernik K
        • Klatzer T
        • Kobler E
        • et al.
        Learning a variational network for reconstruction of accelerated MRI data.
        Magn Reson Med. 2018; 79: 3055-3071
        • Lin DJ
        • Johnson PM
        • Knoll F
        • et al.
        Artificial intelligence for MR image reconstruction: an overview for clinicians.
        J Magn Reson Imaging. 2021; 53: 1015-1028
        • Chaudhari AS
        • Sandino CM
        • Cole EK
        • et al.
        Prospective deployment of deep learning in MRI: a framework for important considerations, challenges, and recommendations for best practices.
        J Magn Reson Imaging. 2021; 54: 357-371
        • Gassenmaier S
        • Afat S
        • Nickel D
        • et al.
        Application of a novel iterative denoising and image enhancement technique in T1-weighted precontrast and postcontrast gradient echo imaging of the abdomen: improvement of image quality and diagnostic confidence.
        Invest Radiol. 2021; 56: 328-334
        • Gassenmaier S
        • Herrmann J
        • Nickel D
        • et al.
        Image quality improvement of dynamic contrast-enhanced gradient echo magnetic resonance imaging by iterative denoising and edge enhancement.
        Invest Radiol. 2021; 56: 465-470
        • Herrmann J
        • Gassenmaier S
        • Nickel D
        • et al.
        Diagnostic confidence and feasibility of a deep learning accelerated HASTE sequence of the abdomen in a single breath-hold.
        Invest Radiol. 2021; 56: 313-319
        • Ebner M
        • Patel PA
        • Atkinson D
        • et al.
        Super-resolution for upper abdominal MRI: Acquisition and post-processing protocol optimization using brain MRI control data and expert reader validation.
        Magn Reson Med. 2019; 82: 1905-1919
        • Gassenmaier S
        • Küstner T
        • Nickel D
        • et al.
        Deep learning applications in magnetic resonance imaging: has the future become present?.
        Diagnostics. 2021; 11: 2181
        • Chaudhari AS
        • Fang Z
        • Kogan F
        • et al.
        Super-resolution musculoskeletal MRI using deep learning.
        Magn Reson Med. 2018; 80: 2139-2154
        • Van Reeth E
        • Tham IW
        • Tan CH
        • et al.
        Super-resolution in magnetic resonance imaging: a review.
        Concepts in Magnetic Resonance Part A. 2012; 40: 306-325
        • Noll DC
        • Nishimura DG
        • Macovski A
        Homodyne detection in magnetic resonance imaging.
        IEEE Trans Med Imaging. 1991; 10: 154-163
        • Haacke EM
        • Lindskogj E
        • Lin W
        A fast, iterative, partial-Fourier technique capable of local phase recovery.
        Journal of Magnetic Resonance (1969). 1991; 92: 126-145
        • Gadjimuradov F
        • Benkert T
        • Nickel MD
        • et al.
        Robust partial Fourier reconstruction for diffusion-weighted imaging using a recurrent convolutional neural network.
        Magn Reson Med. 2022; 87: 2018-2033
        • Shi W
        • Caballero J
        • Huszár F
        • et al.
        Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network.
        in: Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA2016: 1874-1883
        • Yang RK
        • Roth CG
        • Ward RJ
        • et al.
        Optimizing abdominal MR imaging: approaches to common problems.
        Radiographics. 2010; 30: 185-199
        • Feng L
        • Benkert T
        • Block KT
        • et al.
        Compressed sensing for body MRI.
        J Magn Reson Imaging. 2017; 45: 966-987
        • Kang H-J
        • Lee JM
        • Ahn SJ
        • et al.
        Clinical feasibility of gadoxetic acid–enhanced isotropic high-resolution 3-dimensional magnetic resonance cholangiography using an iterative denoising algorithm for evaluation of the biliary anatomy of living liver donors.
        Invest Radiol. 2019; 54: 103-109
        • Recht MP
        • Zbontar J
        • Sodickson DK
        • et al.
        Using deep learning to accelerate knee MRI at 3 T: results of an interchangeability study.
        Am J Roentgenol. 2020; 215: 1421-1429
        • Koktzoglou I
        • Huang R
        • Ankenbrandt WJ
        • et al.
        Super-resolution head and neck MRA using deep machine learning.
        Magn Reson Med. 2021; 86: 335-345
        • Chang KJ
        • Kamel IR
        • Macura KJ
        • et al.
        3.0-T MR imaging of the abdomen: comparison with 1.5 T.
        Radiographics. 2008; 28: 1983-1998
        • Schick F
        • Pieper CC
        • Kupczyk P
        • et al.
        1.5 vs 3 Tesla magnetic resonance imaging: a review of favorite clinical applications for both field strengths—part 1.
        Invest Radiol. 2021; 56: 680-691