Advertisement

Nanoparticle Contrast-enhanced MRI for Visualization of Retroplacental Clear Space Disruption in a Mouse Model of Placental Accreta Spectrum (PAS)

Published:September 24, 2022DOI:https://doi.org/10.1016/j.acra.2022.08.025

      Introduction

      Prior preclinical studies established the utility of liposomal nanoparticle blood-pool contrast agents in visualizing the retroplacental clear space (RPCS), a marker of normal placentation, while sparing fetuses from exposure because the agent does not cross the placental barrier. In this work, we characterized RPCS disruption in a mouse model of placenta accreta spectrum (PAS) using these agents.

      Materials and Methods

      Contrast-enhanced MRI (CE-MRI) and computed tomography (CE-CT) using liposomal nanoparticles bearing gadolinium (liposomal-Gd) and iodine were performed in pregnant Gab3–/– and wild type (WT) mice at day 16 of gestation. CE-MRI was performed on a 1T scanner using a 2D T1-weighted sequence (100×100×600 µm3 voxels) and CE-CT was performed at a higher resolution (70×70×70 µm3 voxels). Animals were euthanized post-imaging and feto-placental units (FPUs) were harvested for histological examination. RPCS conspicuity was scored through blinded assessment of images.

      Results

      Pregnant Gab3–/– mice showed elevated rates of complicated pregnancy. Contrast-enhanced imaging demonstrated frank infiltration of the RPCS of Gab3–/– FPUs. RPCS in Gab3–/– FPUs was smaller in volume, demonstrated a heterogeneous signal profile, and received lower conspicuity scores than WT FPUs. Histology confirmed in vivo findings and demonstrated staining consistent with a thinner RPCS in Gab3–/– FPUs.

      Discussion

      Imaging of the Gab3–/– mouse model at late gestation with liposomal contrast agents enabled in vivo characterization of morphological differences in the RPCS that could cause the observed pregnancy complications. An MRI-based method for visualizing the RPCS would be valuable for early detection of invasive placentation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Belfort MA
        Placenta accrete.
        Am. J. Obstet. Gynecol. 2010; 203:: 430-439https://doi.org/10.1016/j.ajog.2010.09.013
        • Azour L
        • Besa C
        • Lewis S
        • et al.
        The gravid uterus: MR imaging and reporting of abnormal placentation.
        Abdom. Radiol. 2016; 41: 2411-2423https://doi.org/10.1007/s00261-016-0752-5
        • Einerson BD
        • Comstock J
        • Silver RM
        • et al.
        Placenta accreta spectrum disorder: uterine dehiscence, not placental invasion.
        Obstet. Gynecol. 2020; 135: 1104-1111https://doi.org/10.1097/AOG.0000000000003793
        • Brown LA
        • Menendez-Bobseine M
        Placenta accreta spectrum.
        J. Midwifery Women's Heal. 2021; 66: 265-269https://doi.org/10.1111/jmwh.13182
        • Jauniaux E
        • Kingdom JC
        • Silver RM
        A comparison of recent guidelines in the diagnosis and management of placenta accreta spectrum disorders.
        Best Pract. Res. Clin Obstet. Gynaecol. 2021; 72: 102-116https://doi.org/10.1016/j.bpobgyn.2020.06.007
        • Hovav Y
        • Almagor M
        Risk of choriocarcinoma from postpartum placental remnants staying for extended times in the uterus.
        Acta Obstet. Gynecol. Scand. 2014; 93: 720https://doi.org/10.1111/aogs.12367
        • Fitzpatrick KE
        • Sellers S
        • Spark P
        • et al.
        The management and outcomes of placenta accreta, increta, and percreta in the UK: a population-based descriptive study.
        BJOG An Int. J. Obstet. Gynaecol. 2014; 121: 62-71https://doi.org/10.1111/1471-0528.12405
        • Kumar I
        • Verma A
        • Ojha R
        • et al.
        Invasive placental disorders: a prospective US and MRI comparative analysis.
        Acta Radiol. 2017; 58: 121-128https://doi.org/10.1177/0284185116638567
        • Yu FNY
        • Leung KY
        Antenatal diagnosis of placenta accreta spectrum (PAS) disorders.
        Best Pract. Res. Clin. Obstet. Gynaecol. 2021; 72: 13-24https://doi.org/10.1016/j.bpobgyn.2020.06.010
        • Maher MA
        • Abdelaziz A
        • Bazeed MF
        Diagnostic accuracy of ultrasound and MRI in the prenatal diagnosis of placenta accrete.
        Acta Obstet. Gynecol. Scand. 2013; 92: 1017-1022https://doi.org/10.1111/aogs.12187
        • Palacios-Jaraquemada JM
        • Fiorillo A
        • Hamer J
        • et al.
        Placenta accreta spectrum: a hysterectomy can be prevented in almost 80% of cases using a resective-reconstructive technique.
        J. Matern. Neonatal Med. 2020; 35: 1-8https://doi.org/10.1080/14767058.2020.1716715
        • Thiravit S
        • Ma K
        • Goldman I
        • et al.
        Role of ultrasound and mri in diagnosis of severe placenta accreta spectrum disorder: an intraindividual assessment with emphasis on placental bulge.
        Am. J. Roentgenol. 2021; 217: 1377-1388https://doi.org/10.2214/AJR.21.25581
        • Twickler DM
        • Yule CS
        • Spong CY
        Predicting placenta accreta spectrum: validation of the placenta accreta index.
        J. Ultrasound Med. 2021; 40: 2789https://doi.org/10.1002/jum.15663
        • Jauniaux E
        • Bhide A
        Prenatal ultrasound diagnosis and outcome of placenta previa accreta after cesarean delivery: a systematic review and meta-analysis.
        Am. J. Obstet. Gynecol. 2017; 217: 27-36https://doi.org/10.1016/j.ajog.2017.02.050
        • Bailit JL
        • Grobman WA
        • Rice MM
        • et al.
        Morbidly adherent placenta treatments and outcomes.
        Obstet. Gynecol. 2015; 125: 683-689https://doi.org/10.1097/AOG.0000000000000680
        • Svanvik T
        • Jacobsson AK
        • Carlsson Y
        Prenatal detection of placenta previa and placenta accreta spectrum: evaluation of the routine mid-pregnancy obstetric ultrasound screening between 2013 and 2017.
        Int. J. Gynecol. Obstet. 2021; 157: 647-653https://doi.org/10.1002/ijgo.13876
        • Burke SD
        • Zsengellér ZK
        • Karumanchi SA
        • et al.
        A mouse model of placenta accreta spectrum.
        Placenta. 2020; 99: 8-15https://doi.org/10.1016/j.placenta.2020.06.006
        • Sliz A
        • Locker KCS
        • Lampe K
        • et al.
        Gab3 is required for IL-2- And IL-15-induced NK cell expansion and limits trophoblast invasion during pregnancy.
        Sci. Immunol. 2019; 4: eaav3866https://doi.org/10.1126/sciimmunol.aav3866
        • Sármay G
        • Angyal A
        • Kertész Á
        • et al.
        The multiple function of Grb2 associated binder (Gab) adaptor/scaffolding protein in immune cell signaling.
        Immunol. Lett. 2006; 104: 76-82https://doi.org/10.1016/j.imlet.2005.11.017
        • Badachhape AA
        • Devkota L
        • Stupin IV
        • et al.
        Nanoparticle contrast-enhanced T1-mapping enables estimation of placental fractional blood volume in a pregnant mouse model.
        Sci. Rep. 2019; 9: 18707https://doi.org/10.1038/s41598-019-55019-8
        • Badachhape AA
        • Kumar A
        • Ghaghada KB
        • et al.
        Pre-clinical magnetic resonance imaging of retroplacental clear space throughout gestation.
        Placenta. 2019; 77: 1-7https://doi.org/10.1016/j.placenta.2019.01.017
        • Shetty AN
        • Pautler R
        • Ghagahda K
        • et al.
        A liposomal Gd contrast agent does not cross the mouse placental barrier.
        Sci. Rep. 2016; 6: 27863https://doi.org/10.1038/srep27863
        • Ghaghada KB
        • Starosolski ZA
        • Bhayana S
        • et al.
        Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta.
        Placenta. 2017; 57: 60-70https://doi.org/10.1016/j.placenta.2017.06.008
        • Ghaghada KB
        • Starosolski Z
        • Bhayana S
        • et al.
        Contrast-enhanced MRI evaluation of placental margins using a nanoparticle blood pool contrast agent: pre-clinical testing in a pregnant rat model.
        Pediatr Radiol. 2017; 57: 60-70https://doi.org/10.1007/s00247-017-3809-x
        • Ghaghanda KB
        • Ravoori M
        • Sabapathy D
        • et al.
        New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging.
        PLoS One. 2009; 4: e7628https://doi.org/10.1371/journal.pone.0007628
        • Mukundan S
        • Ghaghada KB
        • Badea CT
        • et al.
        A liposomal nanoscale contrast agent for preclinical CT in mice.
        Am. J. Roentgenol. 2006; 186: 300-307https://doi.org/10.2214/AJR.05.0523
        • Burke SJ
        • Annapragada A
        • Hoffman EA
        • et al.
        Imaging of pulmonary embolism and t-PA therapy effects using MDCT and liposomal iohexol blood pool agent. Preliminary results in a rabbit model.
        Acad. Radiol. 2007; 14: 355-362https://doi.org/10.1016/j.acra.2006.12.014
        • Starosolski Z
        • Villamizar CA
        • Rendon D
        • et al.
        Ultra high-resolution in vivo computed tomography imaging of mouse cerebrovasculature using a long circulating blood pool contrast agent.
        Sci. Rep. 2015; 5: 10178https://doi.org/10.1038/srep10178
        • Ishibashi H
        • Miyamoto M
        • Shinmoto H
        • et al.
        The use of magnetic resonance imaging to predict placenta previa with placenta accreta spectrum.
        Acta Obstet. Gynecol. Scand. 2020; 99: 1657-1665https://doi.org/10.1111/aogs.13937
        • Varghese B
        • Singh N
        • George RAN
        • et al.
        Magnetic resonance imaging of placenta accreta.
        Indian J. Radiol. Imaging. 2013; 23: 379-385https://doi.org/10.4103/0971-3026.125592