Diagnostic Performance Comparison Between Ultrasound Attenuation Measurements From Right and Left Hepatic Lobes for Steatosis Detection in Non-alcoholic Fatty Liver Disease

Published:December 29, 2022DOI:

      Rationale and Objectives

      Non-alcoholic fatty liver disease (NAFLD) is currently diagnosed by liver biopsy or MRI proton density fat fraction (MRI-PDFF) from left hepatic lobe (LTHL) and/or right hepatic lobe (RTHL). The objective of this study was to compare the diagnostic value of ultrasound attenuation coefficients (ACs) from RTHL and LTHL in detecting hepatic steatosis using biopsy or MRI-PDFF as a reference standard.

      Materials and Methods

      Sixty-six patients with suspected NAFLD were imaged with an Aplio i800 ultrasound scanner (Canon Medical Systems, Tustin, CA). Five AC measurements from RTHL and LTHL were averaged separately and together to be compared with the reference standard.


      Forty-seven patients (71%) were diagnosed with NAFLD. Mean ACs were significantly higher in fatty livers than non-fatty livers (RTHL: 0.73 ± 0.10 vs. 0.63 ± 0.07 dB/cm/MHZ; p < 0.0001, LTHL: 0.78 ± 0.11 vs. 0.63 ± 0.06 dB/cm/MHz; p < 0.0001, RTHL & LTHL: 0.76 ± 0.09 vs. 0.63 ± 0.05 dB/cm/MHz; p < 0.0001). Biopsy steatosis grades (n =31) were better correlated with the mean ACs of RTHL & LTHL (r = 0.72) compared to LTHL (r = 0.67) or RTHL (r = 0.61). Correlation between MRI-PDFF (n = 35) and mean ACs was better for LTHL (r = 0.69) compared to the RTHL & LTHL (r = 0.66) or RTHL (r = 0.45). Higher diagnostic accuracy was shown for the mean ACs of RTHL & LTHL (AUC 0.89, specificity 94%, sensitivity 78%) compared to LTHL (AUC 0.89, specificity 88%, sensitivity 82%) or RTHL (AUC 0.81, specificity 89%, sensitivity 68%).


      Ultrasound ACs from RTHL and LTHL showed comparable diagnostic values in detection of hepatic steatosis with the highest diagnostic accuracy when they were averaged together.

      Key Words


      AC (attenuation coefficient), ATI (attenuation imaging), AUC (area under the curve), BMI (body mass index), LTHL (left hepatic lobe), MRI-PDFF (MRI-proton density fat fraction), NAFLD (non-alcoholic fatty liver disease), ROC (receiver operating characteristic), ROI (region of interest, RTHL, right hepatic lobe), std (standard deviation)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Nalbantoglu IL
        • Brunt EM.
        Role of liver biopsy in nonalcoholic fatty liver disease.
        World J Gastroenterol. 2014; 20 (Available at:): 9026-9037
        • Grgurevic I
        • Podrug K
        • Mikolasevic I
        • Kukla M
        • Madir A
        • Tsochatzis EA.
        Natural history of nonalcoholic fatty liver disease: implications for clinical practice and an individualized approach.
        Can J Gastroenterol Hepatol. 2020; 2020 (Available at:)9181368
        • Arshad T
        • Golabi P
        • Henry L
        • Younossi ZM.
        Epidemiology of Non-alcoholic Fatty Liver Disease in North America.
        Curr Pharm Des. 2020; 26 (Available at:): 993-997
        • Manne V
        • Handa P
        • Kowdley KV.
        Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis.
        Clin Liver Dis. 2018; 22 (Available at:): 23-37
        • Rafiq N
        • Bai C
        • Fang Y
        • et al.
        Long-term follow-up of patients with nonalcoholic fatty liver.
        Clin Gastroenterol Hepatol. 2009; 7 (Available at:): 234-238
        • Sumida Y
        • Nakajima A
        • Itoh Y.
        Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis.
        World J Gastroenterol. 2014; 20 (Available at:): 475-485
        • Gu J
        • Liu S
        • Du S
        • et al.
        Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis.
        Eur Radiol. 2019; 29: 3564-3573
        • Caussy C
        • Alquiraish MH
        • Nguyen P
        • et al.
        Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis.
        Hepatology. 2018; 67 (Available at:): 1348-1359
      1. Caussy C, Reeder SB, Sirlin CB, Loomba R. Noninvasive, Quantitative assessment of Liver Fat by MRI-PDFF as an endpoint in NASH trials. Hepatology. 2018; 68(2):763-72. Available at:

        • Bonekamp S
        • Tang A
        • Mashhood A
        • et al.
        Spatial distribution of MRI-Determined hepatic proton density fat fraction in adults with nonalcoholic fatty liver disease.
        J Magn Reson Imaging. 2014; 39 (Available at:): 1525-1532
        • Pirmoazen AM
        • Khurana A
        • El Kaffas A
        • Kamaya A
        Quantitative ultrasound approaches for diagnosis and monitoring hepatic steatosis in nonalcoholic fatty liver disease.
        Theranostics. 2020; 10 (Available at:): 4277-4289
        • Ferraioli G
        • Soares Monteiro LB.
        Ultrasound-based techniques for the diagnosis of liver steatosis.
        World J Gastroenterol. 2019; 25 (Available at:): 6053-6062
        • Jang JK
        • Choi SH
        • Lee JS
        • Kim SY
        • Lee SS
        • Kim KW.
        Accuracy of the ultrasound attenuation coefficient for the evaluation of hepatic steatosis: a systematic review and meta-analysis of prospective studies.
        Ultrasonography. 2022; 41 (Available at:): 83-92
        • Paige JS
        • Bernstein GS
        • Heba E
        • et al.
        A pilot comparative study of quantitative ultrasound, conventional ultrasound, and MRI for predicting histology-determined steatosis grade in adult nonalcoholic fatty liver disease.
        AJR Am J Roentgenol. 2017; 208 (Available at:): W168-WW77
        • Koizumi Y
        • Hirooka M
        • Tamaki N
        • et al.
        New diagnostic technique to evaluate hepatic steatosis using the attenuation coefficient on ultrasound B mode.
        PLoS One. 2019; 14 (Available at:)e0221548
        • Ferraioli G
        • Maiocchi L
        • Savietto G
        • et al.
        Performance of the Attenuation Imaging Technology in the Detection of Liver Steatosis.
        J Ultrasound Med. 2021; 40 (Available at:): 1325-1332
        • Fujiwara Y
        • Kuroda H
        • Abe T
        • et al.
        The B-mode image-guided ultrasound attenuation parameter accurately detects hepatic steatosis in chronic liver disease.
        Ultrasound Med Biol. 2018; 44 (Available at:): 2223-2232
        • Sugimoto K
        • Moriyasu F
        • Oshiro H
        • et al.
        The role of multiparametric US of the liver for the evaluation of nonalcoholic steatohepatitis.
        Radiology. 2020; 296 (Available at:): 532-540
        • Ferraioli G
        • Maiocchi L
        • Raciti MV
        • et al.
        Detection of liver steatosis with a novel ultrasound-based technique: a pilot study using MRI-derived proton density fat fraction as the gold standard.
        Clin Transl Gastroenterol. 2019; 10 (Available at:): e00081
        • Bae JS
        • Lee DH
        • Lee JY
        • et al.
        Assessment of hepatic steatosis by using attenuation imaging: a quantitative, easy-to-perform ultrasound technique.
        Eur Radiol. 2019; 29 (Available at:): 6499-6507
        • Tamaki N
        • Koizumi Y
        • Hirooka M
        • et al.
        Novel quantitative assessment system of liver steatosis using a newly developed attenuation measurement method.
        Hepatol Res. 2018; 48 (Available at:): 821-828
        • Jeon SK
        • Lee JM
        • Joo I
        • Yoon JH
        • Lee DH
        • Lee JY
        • et al.
        Prospective evaluation of hepatic steatosis using ultrasound attenuation imaging in patients with chronic liver disease with magnetic resonance imaging proton density fat fraction as the reference standard.
        Ultrasound Med Biol. 2019; 45 (Available at:): 1407-1416
        • Dioguardi Burgio M
        • Ronot M
        • Reizine E
        • et al.
        Quantification of hepatic steatosis with ultrasound: promising role of attenuation imaging coefficient in a biopsy-proven cohort.
        Eur Radiol. 2020; 30 (Available at:): 2293-2301
        • Kwon EY
        • Kim YR
        • Kang DM
        • Yoon KH
        • Lee YH.
        Usefulness of US attenuation imaging for the detection and severity grading of hepatic steatosis in routine abdominal ultrasonography.
        Clinical Imaging. 2021; 76 (Available at:): 53-59
        • Lee DH
        • Cho EJ
        • Bae JS
        • et al.
        Accuracy of two-dimensional shear wave elastography and attenuation imaging for evaluation of patients with nonalcoholic steatohepatitis.
        Clin Gastroenterol Hepatol. 2021; 19 (Available at:): 797-805e7
        • Tada T
        • Kumada T
        • Toyoda H
        • et al.
        Attenuation imaging based on ultrasound technology for assessment of hepatic steatosis: a comparison with magnetic resonance imaging-determined proton density fat fraction.
        Hepatol Res. 2020; 50 (Available at:): 1319-1327
        • Barr RG
        • Ferraioli G
        • Palmeri ML
        • et al.
        Elastography assessment of liver fibrosis: society of radiologists in ultrasound consensus conference statement.
        Radiology. 2015; 276: 845-846
        • Tang A
        • Desai A
        • Hamilton G
        • et al.
        Accuracy of MR imaging–estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease.
        Radiology. 2015; 274: 416-425
      2. Riffenburgh RH. Statistics in medicine (Third Edition), Amsterdam, Academic Press, Elsevier, 2012.

        • Habibzadeh F
        • Habibzadeh P
        • Yadollahie M.
        On determining the most appropriate test cut-off value: the case of tests with continuous results.
        Biochem Med (Zagreb). 2016; 26: 297-307
        • Ferraioli G
        • Kumar V
        • Ozturk A
        • Nam K
        • de Korte CL
        • Barr RG.
        US attenuation for liver fat quantification: an AIUM-RSNA QIBA pulse-echo quantitative ultrasound initiative.
        Radiology. 2022; 210736
        • Capitan V.
        • Petit JM.
        • Aho S.
        • et al.
        Macroscopic heterogeneity of liver fat: an MR-based study in type-2 diabetic patients.
        Eur Radiol. 2012; 22: 2161-2168
        • Hua B
        • Hakkarainen A
        • Zhou Y
        • Lundbom N
        • Yki-Jarvinen H.
        Fat accumulates preferentially in the right rather than the left liver lobe in non-diabetic subjects.
        Dig Liver Dis. 2018; 50 (Available at:): 168-174
        • Lee H
        • Jun DW
        • Kang BK
        • et al.
        Estimating of hepatic fat amount using MRI proton density fat fraction in a real practice setting.
        Medicine (Baltimore). 2017; 96 (Available at:): e7778
        • Larson SP
        • Bowers SP
        • Palekar NA
        • Ward JA
        • Pulcini JP
        • Harrison SA.
        Histopathologic variability between the right and left lobes of the liver in morbidly obese patients undergoing Roux-en-Y bypass.
        Clin Gastroenterol Hepatol. 2007; 5 (Available at:): 1329-1332
        • Merriman RB
        • Ferrell LD
        • Patti MG
        • et al.
        Correlation of paired liver biopsies in morbidly obese patients with suspected nonalcoholic fatty liver disease.
        Hepatology. 2006; 44 (Available at:): 874-880
        • Janiec DJ
        • Jacobson ER
        • Freeth A
        • Spaulding L
        • Blaszyk H.
        Histologic variation of grade and stage of non-alcoholic fatty liver disease in liver biopsies.
        Obes Surg. 2005; 15 (Available at:): 497-501
        • Khurana S
        • Butt W
        • Khara HS
        • et al.
        Bi-lobar liver biopsy via EUS enhances the assessment of disease severity in patients with non-alcoholic steatohepatitis.
        Hepatol Int. 2019; 13 (Available at:): 323-329
        • Vu KN
        • Gilbert G
        • Chalut M
        • Chagnon M
        • Chartrand G
        • Tang A.
        MRI-determined liver proton density fat fraction, with MRS validation: comparison of regions of interest sampling methods in patients with type 2 diabetes.
        J Magn Reson Imaging. 2016; 43 (Available at:): 1090-1099
        • Hong CW
        • Wolfson T
        • Sy EZ
        • et al.
        Optimization of region-of-interest sampling strategies for hepatic MRI proton density fat fraction quantification.
        J Magn Reson Imaging. 2018; 47 (Available at:): 988-994
        • Campo CA
        • Hernando D
        • Schubert T
        • Bookwalter CA
        • Pay AJV
        • Reeder SB.
        Standardized approach for ROI-based measurements of proton density fat fraction and R2* in the liver.
        AJR Am J Roentgenol. 2017; 209 (Available at:): 592-603