Rationale and Objectives
Materials and Methods
Results
Conclusion
Key Words
Abbreviations:
LRE (Low Resource Environments), DMD (Duchenne Muscular Dystrophy), SOS (speed of sound), MRI (magnetic resonance imaging)INTRODUCTION
Low-Frequency 3D Transmission Ultrasound Tomography: Volography
Guasch L, Calderón Agudo O, Tang M-X, et al. Full-waveform inversion imaging of the human brain. npj Digital Med 2020;3:28. https://doi.org/10.1038/s41746-020-0240-8.
Comparisons With Conventional Imaging Modalities
- 1.Does not always quantitatively image certain tissues (cartilage, periosteum, and ligaments—see Wiskin et al (2) where these structures do not produce a signal),
- 2.requires a strong magnetic field, which is difficult to get in certain situations (e.g., LRE),
- 3.requires specialized training,
- 4.may require a contrast agent injection,
- 5.may be contra-indicated for some patients,
- 6.requires expensive and large machinery not appropriate for LRE,
- 7.Is not easily adapted for use with intervention or biopsy.
- Rothberg J.M.
- Ralston T.
- Rothberg A.
- et al.
Ruiter NV, Zapf M, Hopp T, et al, 3D ultrasound computer tomography of the breast: a new era?, Eur J Radiol 2012;81:S133–S134. https://doi.org/10.1016/S0720-048X(12)70055-4.
- Ozmen N.
- Dapp R.
- Zapf M.
- et al.
Klock JLM, Wiskin J, Malik B, and Natesan R, In emerging trends in ultrasound imaging, 43, 2018, Openaccessbooks, 1–18, Ch. 1 http://openaccessebooks.com/emerging-trends-ultrasound-imaging/transmission-ultrasound-imaging-using-3D-inverse-scattering.pdf, 2018
- Wiskin J.W.
- Borup D.T.
- Iuanow E.
- et al.
- Malik B.
- Iuanow E.
- Klock J.
Malik B, Klock J, Wiskin J, et al. Objective breast tissue image classification using quantitative transmission ultrasound tomography Sci Rep 2016;6:38857. http://www.nature.com/articles/srep38857#supplementary-information.
- Malik B.
- Iuanow E.
- Klock J.

Low-Frequency 3D Transmission Volography
- Wiskin J.W.
- Borup D.T.
- Iuanow E.
- et al.
- Wiskin J.
- Borup D.
- Johnson S.
- et al.
- Wiskin J.
- Borup D.
- Johnson S.
- et al.
Unique Advantages of 3D Volography Reconstruction
Guasch L, Calderón Agudo O, Tang M-X, et al. Full-waveform inversion imaging of the human brain. npj Digital Med 2020;3:28. https://doi.org/10.1038/s41746-020-0240-8.
- Wiskin J.W.
- Borup D.T.
- Iuanow E.
- et al.
Wiskin J, Klock J, Iuanow E, et al. Quantitative 3D high resolution transmission ultrasound tomography: creating clinically relevant images, proc. SPIE Medical Imaging 2017 vol. 101390Y-101390Y-101391. https://doi.org/10.1117/12.2254639.
Ruiter NV, Zapf M, Hopp T, et al, 3D ultrasound computer tomography of the breast: a new era?, Eur J Radiol 2012;81:S133–S134. https://doi.org/10.1016/S0720-048X(12)70055-4.
Guasch L, Calderón Agudo O, Tang M-X, et al. Full-waveform inversion imaging of the human brain. npj Digital Med 2020;3:28. https://doi.org/10.1038/s41746-020-0240-8.
Guasch L, Calderón Agudo O, Tang M-X, et al. Full-waveform inversion imaging of the human brain. npj Digital Med 2020;3:28. https://doi.org/10.1038/s41746-020-0240-8.
MATERIALS AND METHODS
Data Acquisition
- Wiskin J.W.
- Borup D.T.
- Iuanow E.
- et al.
- Wiskin J.
- Malik B.
- Natesan R.
- et al.
Reconstruction Algorithm: 3D vs 2D Algorithm
Paraxial Approximation
Guasch L, Calderón Agudo O, Tang M-X, et al. Full-waveform inversion imaging of the human brain. npj Digital Med 2020;3:28. https://doi.org/10.1038/s41746-020-0240-8.
- Wiskin J.W.
- Borup D.T.
- Iuanow E.
- et al.
- Wiskin J.
- Borup D.
- Johnson S.
- et al.
Refraction Corrected Reflection Image Formation
Animal Imaging
Segmentation
Tissue type | #pixels | Volume of Interest (VOI) cm3 | QT Image Values (m/s) | Literature Values avg | Relative Error |
---|---|---|---|---|---|
Muscle (epaxial) | 26,750 | 4.28 | 1576 | 1592.5 | 1.04% |
Fat | 2,01,875 | 32.3 | 1447 | 1415 | 2.26% |
Skin | 5438 | 0.87 | 1563 | 1578.5 | 0.98% |
Kidney | 24,938 | 3.99 | 1552.3 | 1563 | 0.68% |
Liver 2 | 86,250 | 13.8 | 1563.6 | 1580 | 1.04% |
Liver 1 | 75,000 | 12 | 1564 | 1580 | 1.01% |
Bone 1 (preossified) | 2313 | 0.37 | 1790.5 | 1760 | 1.73% |
Bone 2 (pelvic region) | 3000 | 0.48 | 1775 | 1760 | 0.85% |
Bone 3 (preossified) | 4331 | 0.693 | 1754 | 1760 | 0.34% |
RESULTS


Additional Validation of the QT Image Quality Can Be Seen by Performing Whole-Body Sectioning






DISCUSSION AND CONCLUSION
- Malik B.
- Iuanow E.
- Klock J.
- Klock J.C.
- Iuanow E.
- Malik B.
- et al.
- Wiskin J.W.
- Borup D.T.
- Iuanow E.
- et al.
- Wiskin J.W.
- Borup D.T.
- Iuanow E.
- et al.
2D–Tomography | 3D–Volography | |
---|---|---|
Data | A given level of data gives one slice of image | A given level of data contributes to all slices of the 3D image |
Image | A given slice of the object contributes to one level of the data set | A given slice of the object contributes to all levels of the data set |
Clinical Applications
Guasch L, Calderón Agudo O, Tang M-X, et al. Full-waveform inversion imaging of the human brain. npj Digital Med 2020;3:28. https://doi.org/10.1038/s41746-020-0240-8.
Guasch L, Calderón Agudo O, Tang M-X, et al. Full-waveform inversion imaging of the human brain. npj Digital Med 2020;3:28. https://doi.org/10.1038/s41746-020-0240-8.
Physical Characteristics and Safety
- Klock J.C.
- Iuanow E.
- Malik B.
- et al.
Cost LRE and Safety
Tumor Monitoring
Conclusion
ARRIVE and IACUC
Data availability
Acknowledgements
REFERENCES
Guasch L, Calderón Agudo O, Tang M-X, et al. Full-waveform inversion imaging of the human brain. npj Digital Med 2020;3:28. https://doi.org/10.1038/s41746-020-0240-8.
- Full wave 3D inverse scattering transmission ultrasound tomography in the presence of high contrast.Sci Rep. 2020; 10: 20166
- Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging.Phys Medi Biol. 2017; 62: 7011
- Ultrasound imaging made easy.Sci Transl Med. 2015; 7: 298ec130https://doi.org/10.1126/scitranslmed.aac9741
- Magnetic resonance imaging phenotypes of breast cancer molecular subtypes: a systematic review.Acad Radiol. 2022; 29: S89-S106https://doi.org/10.1016/j.acra.2021.07.017
- Semi-quantitating stiffness of breast solid lesions in ultrasonic elastography.Acad Radiol. 2008; 15: 1347-1353https://doi.org/10.1016/j.acra.2008.08.003
- Synthetic aperture imaging in breast ultrasound: a preliminary clinical study.Acad Radiol. 2012; 19: 923-929https://doi.org/10.1016/j.acra.2012.04.005
- Three-dimensional subharmonic ultrasound imaging in vitro and in vivo.Acad Radiol. 2012; 19: 732-739https://doi.org/10.1016/j.acra.2012.02.015
- Diagnostic performance of contrast enhanced ultrasound in patients with prostate cancer: a meta-analysis.Acad Radiol. 2013; 20: 156-164https://doi.org/10.1016/j.acra.2012.09.018
- Multiplanar reconstructions of 3D automated breast ultrasound improve lesion differentiation by radiologists.Acad Radiol. 2015; 22: 1489-1496https://doi.org/10.1016/j.acra.2015.08.006
- Accuracy of cyst versus solid diagnosis in the breast using quantitative transmission (QT) ultrasound.Acad Radiol. 2017; 24: 1148-1153https://doi.org/10.1016/j.acra.2017.1103.1024
- The diagnostic value of 3D power doppler ultrasound combined with VOCAL in the vascular distribution of breast masses.Acad Radiol. 2020; 27: 198-203https://doi.org/10.1016/j.acra.2019.02.023
- Ultrasound-on-chip platform for medical imaging, analysis, and collective intelligence.Proc Natl Acad Sci. 2021; 118e2019339118https://doi.org/10.1073/pnas.2019339118
- An Exploratory multi-reader, multi-case study comparing transmission ultrasound to mammography on recall rates and detection rates for breast cancer lesions.Acad Radiol. 2022; 29: S10-S18https://doi.org/10.1016/j.acra.2020.11.011
Johnson SA, Stenger F, Wilcox C, et al. In Acoustical Imaging (ed John P. Powers) 409-424 (Springer US, 1982).
Jirik R, Peterlik I, Ruiter N, et al, Sound-speed image reconstruction in sparse-aperture 3-D ultrasound transmission tomography, EEE Trans Ultrason Ferroelectr Freq Control 2012;59:254–264.
Ruiter NV, Zapf M, Hopp T, et al, 3D ultrasound computer tomography of the breast: a new era?, Eur J Radiol 2012;81:S133–S134. https://doi.org/10.1016/S0720-048X(12)70055-4.
- Comparing different ultrasound imaging methods for breast cancer detection.IEEE Transact Ultrasonics, Ferroelectrics, Freq Control. 2015; 62: 637-646https://doi.org/10.1109/TUFFC.2014.006707
- A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.J Acoust Soc Am. 2006; 120: 2086-2095https://doi.org/10.1121/1.2336752
- Numerical schemes for the iterative nonlinear contrast source method.J Acoust Soc Am. 2012; 132: 1918https://doi.org/10.1121/1.4755037
- Sparsity constrained contrast source inversion.J Acoust Soc Am. 2016; 140: 1749-1757https://doi.org/10.1121/1.4962528
- High speed data acquisition in a diffraction tomography system employing large-scale toroidal arrays.Int J Imaging Syst Technol. 1997; : 137-147
Leach, J.R. S. Azavedo, J. Berryman, et al., In Medical Imaging 2002: Ultrasonic Imaging, Tomography and Therapy: Comparison of ultrasound tomography methods in circular geometry, 2002, 362-377.
Duric, N. P. Littrup, E. Holsapple, et al. in Medical imaging 2003: ultrasonic imaging and signal processing. (SPIE Medical Imaging Conference): Ultrasound tomography of breast tissue, 2003, 24-32.
- Development of ultrasound tomography for breast imaging: technical assessment.Med Phys. 2005; 32: 1375-1386https://doi.org/10.1118/1.1897463
- In Vivo Breast sound-speed imaging with ultrasound tomography.Ultrasound Med Biol. 2009; : 1615-1628
Duric ND, Li C, Littrup P, et al. Medical Imaging 2009: Ultrasonic Imaging, Tomography and Therapy. SPIE 72651G: Detection and characterization of breast masses with ultrasound tomography:clinical results 2023:1:8.
- Combining time of flight and diffraction tomography for high resolution breast imaging: initial invivo results (l).J Acoust Soc Am. 2012; 132: 1249-1252
- Breast ultrasound tomography versus MRI for clinical display of anatomy and tumor rendering: preliminary results.Am J Roentgenol. 198, 2012; : 233-239
- Lesion detectability in ultrasonic computed tomography of symptomatic breast patients.Invest Radiol. 1988; 23: 421-427
Greenleaf JF, Johnson SA, Lee SL, et al. In acoustical holography: volume 5 (ed Philip S. Green) 591-603 (Springer US, 1974).
Greenleaf JF, Johnson SA, Samayoa WF, et al. In acoustical holography: volume 6 (ed Newell Booth) 71-90 (Springer US, 1975).
Klock JLM, Wiskin J, Malik B, and Natesan R, In emerging trends in ultrasound imaging, 43, 2018, Openaccessbooks, 1–18, Ch. 1 http://openaccessebooks.com/emerging-trends-ultrasound-imaging/transmission-ultrasound-imaging-using-3D-inverse-scattering.pdf, 2018
- 3-D Nonlinear acoustic inverse scattering: algorithm and quantitative results.IEEE Trans Ultrasonics, Ferroelectrics, Freq Control. 2017; 64: 1161-1174https://doi.org/10.1109/TUFFC.2017.2706189
- Accuracy of cyst versus solid diagnosis in the breast using quantitative transmission (QT) ultrasound.Acad Radiol. 2017; 24: 1148-1153https://doi.org/10.1016/j.acra.2017.03.024
- An exploratory multi-reader, multi-case study comparing transmission ultrasound to mammography on recall rates and detection rates for breast cancer lesions.Acad Radiol. 2020; https://doi.org/10.1016/j.acra.2020.11.011
Malik B, Klock J, Wiskin J, et al. Objective breast tissue image classification using quantitative transmission ultrasound tomography Sci Rep 2016;6:38857. http://www.nature.com/articles/srep38857#supplementary-information.
- Three-dimensional nonlinear inverse scattering: quantitative transmission algorithms, refraction corrected reflection, scanner design and clinical results.Proc Meetings Acoust. 2013; 19075001https://doi.org/10.1121/1.4800267
- Quantitative transmission ultrasound tomography: imaging and performance characteristics.Med Phys. 2018; 45: 3063-3075https://doi.org/10.1002/mp.12957
- Application of three scattering models to characterization of solid tumors in mice.Ultrasonic Imaging. 2006; 28: 83-96https://doi.org/10.1177/016173460602800202
Wiskin J, Klock J, Iuanow E, et al. Quantitative 3D high resolution transmission ultrasound tomography: creating clinically relevant images, proc. SPIE Medical Imaging 2017 vol. 101390Y-101390Y-101391. https://doi.org/10.1117/12.2254639.
- 2019: 951-958https://doi.org/10.1109/ULTSYM.2019.8925778 Full Wave 3D Inverse Scattering Transmission Ultrasound Tomography: Breast and Whole Body Imaging.
- Non-linear inverse scattering: high resolution quantitative breast tissue tomography.J Acoust Soc Am. 2012; 131: 3802-3813https://doi.org/10.1121/1.3699240
- Anatomy-correlated breast imaging and visual grading analysis using quantitative transmission ultrasound.Int J Biomed Imaging. 2016, 2016; 9https://doi.org/10.1155/2016/7570406
- 2022: 1-3 2022 IEEE International Ultrasonics Symposium (IUS).
Article info
Publication history
Publication stage
In Press Corrected ProofIdentification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy