Advertisement
Original Investigation|Articles in Press

Iterative Metal Artifact Reduction in Head and Neck CT Facilitates Tumor Visualization of Oral and Oropharyngeal Cancer Obscured by Artifacts From Dental Hardware

      Rationale and Objectives

      The purpose of this study was to evaluate the diagnostic utility of iterative metal artifact reduction (iMAR) in computed tomography (CT)-imaging of oral and oropharyngeal cancers when obscured by dental hardware artifacts and to determine the most appropriate iMAR settings for this purpose.

      Materials and Methods

      The study retrospectively enrolled 27 patients (8 female, 19 male; mean age 64 ± 12.7 years) with histologically confirmed oral or oropharyngeal cancer obscured by dental artifacts in contrast-enhanced CT. Raw CT data were reconstructed with ascending iMAR strengths (levels 1/2/3/4/5) and one reconstruction without iMAR (level 0). For subjective analysis, two blinded radiologists rated tumor visualization and artifact severity on a five-point Likert scale. For objective analysis, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and artifact index (AI) were determined.

      Results

      iMAR reconstructions improved the subjective image quality of tumor edge and contrast, and the objective parameters of tumor SNR and CNR, reaching their optimum at iMAR levels 4 and 5 (P < .001). AI decreased with iMAR reconstructions reaching its minimum at iMAR level 5 (P < .001). Tumor detection rates increased 2.4-fold with iMAR 5, 2.1-fold with iMAR 4, and 1.9-fold with iMAR 3 compared to reconstructions without iMAR. Disadvantages such as algorithm-induced artifacts increased significantly with higher iMAR strengths (P < .05), reaching a maximum with iMAR 5.

      Conclusion

      iMAR significantly improves CT imaging of oral and oropharyngeal cancers, as confirmed by both subjective and objective measures, with best results at highest iMAR strengths.

      Abbreviations:

      AI (artifact index), ANOVA (analysis of variance), CI (confidence interval), CNR (contrast-to-noise ratio), CT (computed tomography), FSMAR (frequency-split metal artifact reduction), ICC (intraclass correlation coefficient), iMAR (iterative metal artifact reduction), NMAR (normalized metal artifact reduction), pT (pathologic tumor stage), ROI (region of interest), SD (standard deviation), SNR (signal-to-noise ratio), TNM (tumor, nodes, metastasis), UICC (Union for International Cancer Control)

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Academic Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Leslie A.
        • Fyfe E.
        • Guest P.
        • Goddard P.
        • Kabala J.E.
        Staging of squamous cell carcinoma of the oral cavity and oropharynx: a comparison of MRI and CT in T- and N-staging.
        J Comput Assist Tomogr. 1999; 23: 43-49https://doi.org/10.1097/00004728-199901000-00010
        • Maroldi R.
        • Battaglia G.
        • Maculotti P.
        • Cabassa P.
        • Chiesa A.
        Computed tomography scanning of supraglottic neoplasms: its cost-effective use in preoperative staging.
        Acad Radiol. 1996; 3: 57-59https://doi.org/10.1016/S1076-6332(96)80485-5
        • Blatt S.
        • Ziebart T.
        • Krüger M.
        • Pabst A.M.
        Diagnosing oral squamous cell carcinoma: how much imaging do we really need? A review of the current literature.
        J Craniomaxillofac Surg. 2016; 44: 538-549https://doi.org/10.1016/J.JCMS.2016.02.003
        • Tshering Vogel D.W.
        • Thoeny H.C.
        Cross-sectional imaging in cancers of the head and neck: how we review and report.
        Cancer Imaging. 2016; 16: 20https://doi.org/10.1186/s40644-016-0075-3
        • Barrett J.F.
        • Keat N.
        Artifacts in CT: recognition and avoidance.
        Radiographics. 2004; 24: 1679-1691https://doi.org/10.1148/RG.246045065
        • Lee M.J.
        • Kim S.
        • Lee S.A.
        • et al.
        Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT.
        Radiographics. 2007; 27: 791-803https://doi.org/10.1148/rg.273065087
        • Troeltzsch D.
        • Shnayien S.
        • Heiland M.
        • et al.
        Detectability of head and neck cancer via new computed tomography reconstruction tools including iterative reconstruction and metal artifact reduction.
        Diagnostics. 2021; 11: 2154https://doi.org/10.3390/diagnostics11112154
        • Feldhaus F.
        • Böning G.
        • Jonczyk M.
        • et al.
        Metallic dental artifact reduction in computed tomography (Smart MAR): improvement of image quality and diagnostic confidence in patients with suspected head and neck pathology and oral implants.
        Eur J Radiol. 2019; 118: 153-160https://doi.org/10.1016/J.EJRAD.2019.07.015
        • Lell M.M.
        • Meyer E.
        • Kuefner M.A.
        • et al.
        Normalized metal artifact reduction in head and neck computed tomography.
        Investig Radiol. 2012; 47: 415-421https://doi.org/10.1097/RLI.0b013e3182532f17
        • Schmidt A.M.A.
        • Grunz J.P.
        • Petritsch B.
        • et al.
        Combination of iterative metal artifact reduction and virtual monoenergetic reconstruction using split-filter dual-energy CT in patients with dental artifact on head and neck CT.
        AJR Am J Roentgenol. 2022; 218: 716-727https://doi.org/10.2214/AJR.21.26772
        • Washio H.
        • Ohira S.
        • Funama Y.
        • et al.
        Metal artifact reduction using iterative CBCT reconstruction algorithm for head and neck radiation therapy: a phantom and clinical study.
        Eur J Radiol. 2020; 132: 109293https://doi.org/10.1016/J.EJRAD.2020.109293
        • Branco D.
        • Kry S.
        • Taylor P.
        • et al.
        Development of a stereoscopic CT metal artifact management algorithm using gantry angle tilts for head and neck patients.
        J Appl Clin Med Phys. 2020; 21: 120-130https://doi.org/10.1002/ACM2.12922
        • Ketelsen D.
        • Werner M.K.
        • Thomas C.
        • et al.
        Image quality analysis to reduce dental artifacts in head and neck imaging with dual-source computed tomography.
        Rofo. 2009; 181: 54-59https://doi.org/10.1055/S-2008-1027883
        • Mangold S.
        • Gatidis S.
        • Luz O.
        • et al.
        Single-source dual-energy computed tomography: use of monoenergetic extrapolation for a reduction of metal artifacts.
        Investig Radiol. 2014; 49: 788-793https://doi.org/10.1097/rli.0000000000000083
        • Meinel F.G.
        • Bischoff B.
        • Zhang Q.
        • Bamberg F.
        • Reiser M.F.
        • Johnson T.R.
        Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: a systematically optimized protocol.
        Investig Radiol. 2012; 47: 406-414https://doi.org/10.1097/RLI.0b013e31824c86a3
        • Toepker M.
        • Czerny C.
        • Ringl H.
        • et al.
        Can dual-energy CT improve the assessment of tumor margins in oral cancer.
        Oral Oncol. 2014; 50: 221-227https://doi.org/10.1016/J.ORALONCOLOGY.2013.12.001
        • Morsbach F.
        • Bickelhaupt S.
        • Wanner G.A.
        • Krauss A.
        • Schmidt B.
        • Alkadhi H.
        Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions.
        Radiology. 2013; 268: 237-244https://doi.org/10.1148/radiol.13122089
        • Shim E.
        • Kang Y.
        • Ahn J.M.
        • et al.
        Metal artifact reduction for orthopedic implants (O-MAR): usefulness in CT evaluation of reverse total shoulder arthroplasty.
        AJR Am J Roentgenol. 2017; 209: 860-866https://doi.org/10.2214/AJR.16.17684
        • Lell M.M.
        • Meyer E.
        • Schmid M.
        • et al.
        Frequency split metal artefact reduction in pelvic computed tomography.
        Eur Radiol. 2013; 23: 2137-2145https://doi.org/10.1007/s00330-013-2809-y
        • Laukamp K.R.
        • Zopfs D.
        • Lennartz S.
        • et al.
        Metal artifacts in patients with large dental implants and bridges: combination of metal artifact reduction algorithms and virtual monoenergetic images provides an approach to handle even strongest artifacts.
        Eur Radiol. 2019; 29: 4228-4238https://doi.org/10.1007/S00330-018-5928-7
        • Bongers M.N.
        • Schabel C.
        • Thomas C.
        • et al.
        Comparison and combination of dual-energy- and iterative-based metal artefact reduction on hip prosthesis and dental implants.
        PLoS One. 2015; 10e0143584https://doi.org/10.1371/JOURNAL.PONE.0143584
        • Kubo Y.
        • Ito K.
        • Sone M.
        • et al.
        Diagnostic value of model-based iterative reconstruction combined with a metal artifact reduction algorithm during CT of the oral cavity.
        Am J Neuroradiol. 2020; 41: 2132-2138https://doi.org/10.3174/AJNR.A6767
        • Wuest W.
        • May M.S.
        • Brand M.
        • et al.
        Improved image quality in head and neck CT using a 3D iterative approach to reduce metal artifact.
        AJNR Am J Neuroradiol. 2015; 36: 1988-1993https://doi.org/10.3174/ajnr.A4386
        • Kotsenas A.L.
        • Michalak G.J.
        • DeLone D.R.
        • et al.
        CT metal artifact reduction in the spine: can an iterative reconstruction technique improve visualization.
        AJNR Am J Neuroradiol. 2015; 36: 2184-2190https://doi.org/10.3174/AJNR.A4416
        • Trabzonlu T.A.
        • Terrazas M.
        • Mozaffary A.
        • Velichko Y.S.
        • Yaghmai V.
        Application of iterative metal artifact reduction algorithm to CT urography for patients with hip prostheses.
        AJR Am J Roentgenol. 2020; 214: 137-143https://doi.org/10.2214/AJR.19.21748
        • Kim Y.J.
        • Cha J.G.
        • Kim H.
        • Yi J.S.
        • Kim H.J.
        Dual-energy and iterative metal artifact reduction for reducing artifacts due to metallic hardware: a loosening hip phantom study.
        AJR Am J Roentgenol. 2019; 212: 1106-1111https://doi.org/10.2214/AJR.18.20413
        • Brendlin A.S.
        • Reinert C.P.
        • Baumgartner H.
        • et al.
        CT in patients with external fixation for complex lower extremity fractures: impact of iterative metal artifact reduction techniques on metal artifact burden and subjective quality.
        Am J Roentgenol. 2022; 218: 300-309https://doi.org/10.2214/AJR.21.26442
        • Subhas N.
        • Primak A.N.
        • Obuchowski N.A.
        • et al.
        Iterative metal artifact reduction: evaluation and optimization of technique.
        Skelet Radiol. 2014; 43: 1729-1735https://doi.org/10.1007/s00256-014-1987-2
        • Eisenhut F.
        • Schmidt M.A.
        • Kalik A.
        • et al.
        Clinical evaluation of an innovative metal-artifact-reduction algorithm in FD-CT angiography in cerebral aneurysms treated by endovascular coiling or surgical clipping.
        Diagnostics. 2022; 12: 1140https://doi.org/10.3390/DIAGNOSTICS12051140
        • Hakim A.
        • Pastore-Wapp M.
        • Vulcu S.
        • Dobrocky T.
        • Z’Graggen W.J.
        • Wagner F.
        Efficiency of iterative metal artifact reduction algorithm (IMAR) applied to brain volume perfusion CT in the follow-up of patients after coiling or clipping of ruptured brain aneurysms.
        Sci Rep. 2019; 919423https://doi.org/10.1038/S41598-019-55792-6
        • Diehn F.E.
        • Michalak G.J.
        • DeLone D.R.
        • et al.
        CT dental artifact: comparison of an iterative metal artifact reduction technique with weighted filtered back-projection.
        Acta Radiol Open. 2017; 6205846011774327https://doi.org/10.1177/2058460117743279
        • Brierley J.
        • Gospodarowicz M.D.
        • Wittekind C.T.
        TNM classification of malignant tumors international union against cancer. 8th.
        Wiley, 2017: 57-62
        • Meyer E.
        • Raupach R.
        • Lell M.
        • Schmidt B.
        • Kachelriess M.
        Normalized metal artifact reduction (NMAR) in computed tomography.
        Med Phys. 2010; 37: 5482-5493https://doi.org/10.1118/1.3484090
        • Meyer E.
        • Raupach R.
        • Lell M.
        • Schmidt B.
        • Kachelriess M.
        Frequency split metal artifact reduction (FSMAR) in computed tomography.
        Med Phys. 2012; 39: 1904-1916https://doi.org/10.1118/1.3691902
        • Willemink M.J.
        • Leiner T.
        • De Jong P.A.
        • et al.
        Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality.
        Eur Radiol. 2013; 23: 1632-1642https://doi.org/10.1007/S00330-012-2764-Z/METRICS
        • Shinohara Y.
        • Ohmura T.
        • Sasaki F.
        • Inomata T.
        • Itoh T.
        • Kinoshita T.
        Appropriate IMAR presets for metal artifact reduction from surgical clips and titanium burr hole covers on postoperative non-contrast brain CT.
        Eur J Radiol. 2021; 141109811https://doi.org/10.1016/J.EJRAD.2021.109811
        • Koo T.K.
        • Li M.Y.
        A guideline of selecting and reporting intraclass correlation coefficients for reliability research.
        J Chiropr Med. 2016; 15: 155-163https://doi.org/10.1016/J.JCM.2016.02.012
        • Portney L.
        • Watkins M.
        Foundations of clinical research: applications to practice. Prentice Hall, 2009
        • Faul F.
        • Erdfelder E.
        • Lang A.G.
        • Buchner A.
        G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences.
        Behav Res Methods. 2007; 39: 175-191https://doi.org/10.3758/BF03193146
        • Rosenthal R.
        Meta-analytic procedures for social research, Meta-analytic procedures for social research. Sage Publications, Inc, 2011
        • Morsbach F.
        • Wurnig M.
        • Kunz D.M.
        • et al.
        Metal artefact reduction from dental hardware in carotid CT angiography using iterative reconstructions.
        Eur Radiol. 2013; 23: 2687-2694https://doi.org/10.1007/s00330-013-2885-z
        • Weiß J.
        • Schabel C.
        • Bongers M.
        • et al.
        Impact of iterative metal artifact reduction on diagnostic image quality in patients with dental hardware.
        Acta Radiol. 2017; 58: 279-285https://doi.org/10.1177/0284185116646144
        • Giantsoudi D.
        • De Man B.
        • Verburg J.
        • et al.
        Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction.
        Phys Med Biol. 2017; 62: R49-R80https://doi.org/10.1088/1361-6560/AA5293
        • Abelson J.A.
        • Murphy J.D.
        • Wiegner E.A.
        • et al.
        Evaluation of a metal artifact reduction technique in tonsillar cancer delineation.
        Pract Radiat Oncol. 2012; 2: 27-34https://doi.org/10.1016/J.PRRO.2011.06.004